- •Примеры расчета и проектирования приводов§
- •12.1. Проектирование привода
- •1. Выбор электродвигателя и кинематическим расчет (рис. 12.2)
- •II. Расчет зубчатых колес редуктора
- •III. Предварительный расчет валов редуктора
- •IV. Конструктивные размеры шестерни и колеса.
- •V Конструктивные размеры корпуса редуктора (см. Рис. 10.18 и табл. 10.2 и 10.3)
- •VI. Расчет цепной передачи
- •VII. Первый этап компоновки редуктора (рис. 12.6)
- •VIII. Проверка долговечности подшипника
- •IX. Второй этап компоновки редуктора (рис. 12.10)
- •X. Проверка прочности шпоночных соединений
- •XI. Уточненный расчет валов
- •XII. Вычерчивание редуктора
- •XIII. Посадки зубчатого колеса, звездочки и подшипников
- •XIV. Выбор сорта масла
- •XV. Сборка редуктора
- •§ 12.2. Расчет цилиндрического косозубого редуктора с колесами из стали повышенной твердости
- •§ 12.3. Расчет привода с одноступенчатым
- •I. Выбор электродвигателя и кинематический расчет (рис. 12.13)
- •II. Расчет клиноременной передачи (см. Табл. 7.11)
- •III. Расчет зубчатых колес редуктора
- •IV. Предварительный расчет валов редуктора и выбор подшипников
- •§ 12.4. Проектирование привода с одноступенчатым коническим прямозубым редуктором и цепной передачей
- •I. Выбор электродвигателя и кинематический расчет
- •II. Расчет зубчатых колес редуктора
- •III. Предварительный расчет валов редуктора
- •IV. Конструктивные размеры шестерни и колеса
- •V. Конструктивные размеры корпуса редуктора (см. Рис. 10.18 и табл. 10.2 и 10.Э)
- •VI. Расчет параметров ценной передачи
- •VII. Первый этап компоновки редуктора (см. Рис. 12.15)
- •VIII. Проверка долговечности подшипников
- •IX. Второй этап компоновки редуктора (рис. 12.18)
- •X. Проверка прочности шпоночных соединений
- •XI. Уточненный расчет валов
- •XII. Вычерчивание редуктора
- •XIII. Посадки основных деталей редуктора
- •XIV. Выбор сорта масла
- •XV. Сборка редуктора
- •§ 12.5. Расчет конического редуктора с круговыми зубьями
- •§ 12.6. Проектирование одноступенчатого червячного редуктора
- •I. Выбор электродвигателя и кинематический расчет
- •II. Расчет редуктора
- •III. Предварительный расчет валов редуктора и конструирование червяка и червячного колеса
- •IV. Конструктивные размеры корпуса редуктора (см. Рис. 10.17, 10.18 и табл. 10.2 и 10.3)
- •V. Первый этап компоновки редуктора (рис. 12.23)
- •VI. Проверка долговечности подшипников
- •VII. Второй этап компоновки редуктора
- •Тепловой расчет редуктора
- •Проверка прочности шпоночных соединений
- •Уточненный расчет валов
- •XI. Посадки деталей редуктора и оформление чертежа
- •XII. Выбор сорта масла
- •XIII.Сборка редуктора
X. Проверка прочности шпоночных соединений
Шпоночные соединения проверяем на смятие так же, как в §. 12.1.
Здесь ограничимся проверкой прочности лишь одного соединения, передающего вращающий момент от ведомого вала к звездочке.
Диаметр вала в этом месте dв2 — 48 мм. Сечение и длина шпонки b × × h × l = 14 × 9 × 63, глубина паза t1 =5,5 мм по ГОСТ 23360-78.
Момент на звездочке Т3 =400103 Н·мм.
Напряжение смятия
XI. Уточненный расчет валов
Так же, как в примере § 12.1, считаем, что нормальные напряжения от изгиба изменяются по симметричному циклу, а касательные от кручения — по отнулевому (пульсирующему).
Материал валов — сталь 45 нормализованная; σв = 570 МПа (см. табл. 3.3).
Пределы выносливости σ-1, =0,43·570 = 246 МПа и τ-1 = 0,58·246 = =142 МПа.
У ведущего вала определять коэффициент запаса прочности в нескольких сечениях нецелесообразно; достаточно выбрать одно сечение с наименьшим коэффициентом запаса, а именно сечение в месте посадки подшипника, ближайшего к шестерне (см. рис. 12.16). В этом опасном сечении действуют максимальные изгибающие моменты МY и МX и крутящий момент Тz = Т1.
Концентрация напряжений вызвана напрессовкой внутреннего кольца подшипника на вал.
Изгибающие моменты в двух взаимно перпендикулярных плоскостях
Суммарный изгибающий момент
Момент сопротивления сечения
Амплитуда нормальных напряжений
Коэффициент запаса прочности по нормальным напряжениям
По табл. 8.7
Полярный момент сопротивления
Амплитуда и среднее напряжение цикла касательных напряжений
Коэффициент запаса прочности по касательным напряжениям
По
табл. 8.7
коэффициент
ψτ
=
0,1;
Коэффициент запаса прочности
Для обеспечения прочности коэффициент запаса должен быть не меньше [s] = 1,5 ÷ 1,7. Учитывая требования жесткости, рекомендуют [s] = =2,5 ÷ 3,0. Полученное значение s = 2,55 достаточно.
У ведомого вала следовало бы проверить прочность в сечении под колесом dK2 — 60 мм и под подшипником dП2 =55 мм со стороны звездочки. Через оба эти сечения передается вращающий момент Т2 = 400·103 Н·мм, но в сечении под колесом действует изгибающий момент
а
под подшипником Ми3
= FBl3
= 3978·100 = 397,8·103
Н·мм. Ми2
больше Ми3
всего на 7%, а момент сопротивления W2
больше
W3
пропорционально
,
т.е. на 30%.
Поэтому заключаем, что из этих двух
сечений более опасно
сечение под подшипником. Для него и
проведем расчет.
Изгибающий момент Mи3 = 397,8 · 103 Н · мм.
Момент сопротивления сечения
Амплитуда нормальных напряжений
Коэффициент запаса прочности по нормальным напряжениям
где
= 3,40 (см. табл. 8.7).
Полярный момент сопротивления
Амплитуда и среднее напряжение цикла касательных напряжений
Коэффициент запаса прочности по касательным напряжениям
где
(см. табл. 8.7) и
ψτ
=
0,1;
Коэффициент запаса прочности
XII. Вычерчивание редуктора
Вычерчиваем редуктор в двух проекциях (рис. 12.19) в масштабе 1:1 с основной надписью и спецификацией. Спецификацию составляем аналогично приведенной на с. 319.
Укажем некоторые конструктивные особенности проектируемого редуктора.
Подшипники ведущего вала смонтированы в общем стакане.
Рассмотрим, как передается осевая сила. От шестерни осевая сила передается через заплечик вала, мазеудерживающее кольцо, внутреннее кольцо правого подшипника, распорную втулку, левый подшипник, промежуточное кольцо, крышку подшипника и болты. С болтов осевая сила передается на корпус редуктора.
Подшипниковый узел ведущего вала уплотнен с одной стороны мазеудерживающим кольцом, а с другой — манжетным уплотнением.
Подшипники ведомого вала уплотнены так же, как подшипники ведущего вала. Осевая сила от зубчатого колеса передается через мазеудерживающее кольцо на внутреннее кольцо подшипника, через ролики на наружное кольцо, далее через промежуточную втулку, крышку подшипника и болты на корпус редуктора.
Радиально-упорные подшипники регулируют набором металлических прокладок (см. рис. 12.19), устанавливаемых между подшипниковыми крышками и фланцами стаканов.
Зубчатое зацепление регулируют набором металлических прокладок, устанавливаемых между фланцем стакана ведущего вала и бобышкой корпуса редуктора, а также прокладками на ведомом валу, которые могут изменять расположение зубчатого колеса.
Для осмотра зацепления и заливки масла служит окно в верхней части корпуса редуктора. Окно закрыто крышкой; для уплотнения под крышку окна помещают прокладку из технического картона.
Маслоспускное отверстие закрывают пробкой и уплотняют прокладкой из маслостойкой резины.
Уровень масла проверяется жезловым маслоуказателем.
Относительное расположение корпуса и крышки редуктора фиксируется двумя коническими штифтами.
Редуктор крепят к фундаменту четырьмя болтами с резьбой М20.
