- •§ 1. Цели и задачи курса «Деталей машин», его связь с другими предметами
- •§ 2. Основные направления в развитии машиностроения. Требования, предъявляемые к проектируемым машинам, узлам и деталям
- •§ 3. Основные критерии работоспособности и расчета деталей машин
- •§ 4. Проектные и проверочные расчеты
- •§ 5. Предельные и допустимые напряжения. Коэффициент запаса прочности
- •§ 6. Краткие сведениа о машиностроительных материалах и основах их
- •0.2. Углеродистая и легированная конструкционная сталь
- •§ 7. Основы стандартизации и взаимозаменяемости в машиностроении
- •Часть I механические передачи
- •Глава 1
- •§ 1. Назначение и роль передач в машинах
- •§ 2. Классификация механических передач
- •§ 3. Основные кинематические и силовые отношения в передачах
- •Глава 2 фрикционные передачи
- •§ 1. Общие сведения
- •§ 2. Геометрические параметры, кинематические и силовые соотношения во фрикционных передачах
- •Контрольная карточка 2.1
- •§ 3. Цилиндрическая фрикционная передача. Устройство, основные геометрические и силовые соотношения
- •§ 4. Расчет на прочность цилиндрической фрикционной передачи
- •2.1. Значения коэффициента трения f для различных материалов
- •2.2. Допускаемые контактные напряжения, модуль упругости для катков из различных материалов
- •Контрольная карточка № 2.2.
- •§ 5. Коническая фрикционная передача. Устройство и основные геометрические соотношения
- •§ 6. Расчет на прочность конической фрикционной передачи
- •§ 7. Вариаторы
- •Глава 3 зубчатые передачи
- •§ 1. Общие сведения и классификация зубчатых передач
- •§ 2. Краткие сведения о методах изготовления зубчатых колес, их конструкциях, материалах
- •§ 3. Основные элементы зубчатой передачи. Термины, определения и обозначения
- •3.1. Стандартные значения модулей
- •§ 4. Основная теорема зубчатого зацепления. Понятия о линии и полюсе зацепления. Профилирование зубьев
- •§ 5. Краткие сведения о корригировании зацеплений
- •§ 6. Виды разрушений зубьев
- •§ 7. Цилиндрические прямозубые передачи. Устройство и основные геометрические соотношения.
- •§ 8. Расчет зубьеа цилиндрической прямозубой передачи
- •3.36. В каком случае проводят вроверочньж расчет зубчатой передачи на изгиб?
- •§ 9. Расчет цилиндрической прямозубой передачи на контактную прочность
- •§ 10. Последовательность проектного расчета цилиндрической прямозубой передачи
- •§ 11. Цилиндрические косозубые и шевронные зубчатые
- •§ 12. Расчет зубьев цилиндрической косозубой и шевронной передач на изгиб
- •§ 13. Расчет цилиндрической косозубой и шевронной передач на контактную прочность
- •§ 14. Последовательность проектного расчета цилиндрической косозубой передачи
- •3.65. Контрольная карточка 3.9.
- •§ 15. Конические зубчатые передачи.
- •§ 16. Расчет зубьев прямозубой конической передачи на изгиб
- •§ 17. Расчет конических прямозубых передач на контактную прочность
- •§ 18. Последовательность проектного расчета конической зубчатой передачи
- •§ 19. Зубчатые передачи с зацеплением Новикова. Устройство, основные геометрические соотношения
- •§ 20. Расчет передачи с зацеплением Новикова на контактную прочность
- •§21. Расчет зубьев на излом
- •§ 22. Планетарные зубчатые передачи. Устройство передачи и расчет на прочность
- •§ 23. Волновые зубчатые передачи. Устройство передачи и расчет на прочность
- •Глава 4 передача винт - гайка
- •§ 2. Расчет передачи винт - гайка на прочность
- •Глава 5 червячные передачи
- •§ 1. Общие сведения, устройство передачи, материалы, область применения, достоинства и недостатки
- •§ 2. Геометрическое соотношение размеров червячной некорригированной передачи с архимедовым червяком.
- •§ 3. Основные критерии работоспособности червячных передач и расчет их на прочность
- •§ 4. Расчет червячной передачи на контактную прочность
- •§ 5. Расчет червячной передачи . На прочность по напряжениям изгиба
- •§ 6. Тепловой расчет червячной передачи
- •§ 7. Последовательность проектного расчета червячных передач
- •Глава 6 ременные передачи
- •§ 1. Общие сведения
- •§ 2. Плоскоременная передача. Конструкция и основные геометрические соотношения
- •§ 3. Геометрия передачи
- •§ 4. Клиноременная передача.
- •§ 5. Основы теории расчета ременных передач.
- •§ 6. Расчет плоскоременной передачи по тяговой силе. Долговечность передачи
- •§ 7. Расчет клиноремеиной передачи на тяговую способность и долговечность
§ 5. Краткие сведения о корригировании зацеплений
3.20. Форма эвольвентного профиля зубьев при заданном угле инструмента а и модуле зависит от числа зубьев z (рис. 3.23): с уменьшением числа зубьев увеличивается кривизна эвольвентного профиля и соответственно уменьшается толщина зубьев у основания и вершины.
Рис. 3.22 Рис. 3.23
Если число зубьев z меньше некоторого предельного значения
Zmin, то при нарезании зубьев происходит подрезание ножек зуба (рис. 3.23, z = 10), в результате чего в опасном сечении зуб значительно ослабляется, снижается его прочность на изгиб, а также уменьшается рабочая часть ножки, что увеличивает изнашивание зубьев и уменьшает коэффициент их перекрытия.
Минимальное число зубьев шестерни, у которой исключено подрезание зубьев без сдвига инструмента реечного типа, определяется по формуле Zmin = 2/sina , где a - угол профиля зуба рейки. Для стандартного зацепления aw = 20°, zmin = 17 При больших окружных скоростях передачи для уменьшения шума для редукторов принимают число зубьев шестерни z1=20÷ЗО.
Для устранения явлений подрезания зубьев и улучшения параметров передачи применяют корригирование. Корригирование зубьев производят на обычных станках стандартным инструментом. Разница в изготовлении зубчатых колес с некорригированными и корригированными зубьями заключается в том, что для последних инструмент устанавливают с некоторым дополнительным смещением по отношению к оси заготовки.
При этом по сравнению с нормальным эвольвентным зацеплением профили корригированных зубьев получаются другими, т. е. используются для данной передачи более выгодные участки эвольвенты той же основной окружности. Соответственно заготовки этих колес должны быть измененного диаметра.
В каких случаях наблюдается подрезание зубьев?
3.21. Коррекция зацепления может быть высотной или угловой. Осуществляется она смещением инструментальной рейки (рис. 3.24) на размер x при нарезании зубьев (положительное смещение рейки - от центра зубчатого колеса, отрицательное - к центру).
Высотное корригирование. Шестерню изготовляют с положительным коэффициентом смещения £1 а колесо с отрицательным - £2 (здесь £2 = x/m). Суммарный коэффициент смещения £=£1 +£2 = 0. При высотной коррекции изменяется соотношение между высотой головки ножек зубьев, общая же высота зубьев не изменяется. Межосевое расстояние aw и угол зацепления aw также остаются неизменными.
Угловое корригирование отличается от высотного тем, что £≠0. При £1 > О и £2 > 0 толщина зубьев по делительным окружностям в, и диаметры вершин зубьев da увеличатся как у шестерни, так и у колеса. Для обеспечения нормального зацепления колеса необходимо раздвинуть на величину aw (при этом начальные окружности отличаются от делительных). При увеличении межосевого расстояния а„ угол зацепления aw возрастает. Угловое корригирование имеет значительно большие возможности, чем высотное, поэтому применяется чаще.
Более подробные сведения по корригированию зацепления приведены в курсе «Теории механизмов» [2], а также в специальной литературе.
Покажите на рис. 3.24 положительное и отрицательное смещение инструмента. Опишите результаты положительного смещения.
