- •1. Устройство процессора
- •2. Архитектура процессоров Pentium 4
- •2. Архитектура процессоров Pentium 4
- •3. Архитектура amd k7(Athlon)
- •4. Архитектура многоядерных процессоров
- •5. Процессоры ibm power
- •6. Семейство процессоров via
- •7. Семейство процессоров Transmeta
- •8. Форм-факторы системных плат
- •9. Схемотехника системной платы
- •10. Системная память
- •10.1 Динамическая и статическая память
- •10.2 Статическая память
- •10.3 Динамическая асинхронная память dram
- •10.4 Динамическая синхронная память sdram
- •10.5 Память ddr sdram
- •10.6 Память ddr2 sdram
- •10.7 Память ddr3 sdram
- •10.8 Память fb-dimm
- •10.9 Память dr dram
- •10.10 Микросхемы памяти
- •10.11 Модули памяти
- •10.12 Маркировка
- •11. Корпус
- •1. Внутренние интерфейсы
- •1.1 Системная шина gtl
- •1.2 Шина HyperTransport
- •1.3 Шина чипсета
- •1.4 Шина isa/eisa
- •1.5 Шина pci
- •1.6 Шина agp
- •1.7 Шина pci Express
- •1.8 Шина ata (ide)
- •1.9 Шина Serial ata
- •1.10 Шина scsi
- •1.11 Интерфейс acpi
- •2. Внешние интерфейсы
- •2.1 Шина сом
- •2.2 Интерфейс IrDa
- •2.3 Шина lpt
- •2.4 Шина usb
- •2.5 Шина FireWire
- •2.6 Порт Bluetooth
- •1. Графические ускорители
- •2 Устройство видеоадаптера
- •3. Технология sli
- •4. Программные интерфейсы
- •5.1 Вершинные шейдеры
- •5.2 Пиксельные шейдеры
- •6. Графический процессор
- •6.1 Первое поколение графических процессоров (1995-1997)
- •6.2 Второе поколение (1997-1999)
- •6.3 Поколение DirectX 7 (1999-2002)
- •6.4 Поколение DirectX 8
- •6.5 Поколение DirectX 9
- •6.6 Поколение DirectX 10
- •7. Телевизионные тюнеры
- •7.1 Устройство тв-тюнера
- •8. Устройство видеозахвата
- •9. Мониторы
- •9.1 Мониторы на элт(crt)
- •9.2 Параметры мониторов элт
- •9.3 Жк дисплеи
- •9.4 Технологии производства активных матриц
- •9.5 Параметры жк-дисплеев
- •11. Мультимедийные проекторы
- •1. Аудиосистема
- •2. Цифровая обработка звука
- •3. Пространственное звучание
- •4. Устройство звуковой карты.
- •5. Аппаратные средства обработки звука
- •5.1 Кодеки ас'97
- •5.2 Кодеки High Definition Audio
- •5.2 Кодеки High Definition Audio
- •5.3 Кодеки Realtek
- •5.4 Кодеки via
- •5.5 Кодеки nVidia
- •5.6 Кодеки c-Media
- •5.7 Кодеки Analog Devices
- •6. Интерфейс midi
9.2 Параметры мониторов элт
Видеосистема ПК
Традиционно количественным выражением качества изготовления маски и люминофора служит размер так называемого «зерна». Для трехточечной теневой маски принято измерять расстояния между двумя соседними точками люминофора по диагонали. Для апертурной решетки и щелевой маски расстояние меряют по горизонтали. В последнее время изготовители трехточечных масок также указывают горизонтальный шаг. Нормальным сегодня считается шаг 0,28 мм, качественные мониторы имеют шаг 0,25 мм, профессиональные - 0,22 мм. Величина шага заметно сказывается на контрастности изображения. Поэтому для графических работ следует выбирать мониторы с шагом не более 0,25 мм. Важным элементом монитора является его электронный тракт, а ядром электронного тракта - видеоусилитель. Полоса пропускания видеоусилителя фактически определяет возможности монитора по разрешению и кадровой развертке. Она должна обеспечить беспрепятственное прохождение генерируемых видеокартой сигналов. Минимально необходимую полосу пропускания легко рассчитать по необходимым параметрам разрешения. Например, вы планируете работать на 19-дюймовом мониторе с программой векторной графики в разрешении 1600x1200 точек при кадровой частоте 100 Гц. Перемножаем все эти цифры, умножаем итог на коэффициент 1,3 (часть полосы сигнала используется для служебной информации) и делим на миллион, в результате получаем необходимую полосу пропускания монитора - около 250 МГц. Отметим, что видеотракт с такой полосой пропускания имеют единичные модели мониторов.
Принципиальная
схема электронного тракта монитора
9.3 Жк дисплеи
Видеосистема ПК
Экраны на плоских панелях для комплектации домашних компьютеров основаны на технологии жидких кристаллов. Жидкокристаллические мониторы (LCD, Liquid Crystal Display) имеют панели, ячейки (пикселы) которых содержат жидкие вещества, обладающие некоторыми свойствами, присущими кристаллам. Молекулы жидких кристаллов под воздействием электрического поля могут изменять свою ориентацию и вследствие этого изменять поляризацию светового луча, проходящего сквозь них. Жидкие кристаллы не могут сами излучать свет, а служат затворами, пропуская или не пропуская свет от ламп подсветки. ЖК-панель имеет несколько слоев, среди которых ключевую роль играют две стеклянные подложки и находящийся между ними слой жидких кристаллов. Позади них расположены одна - две лампы подсветки и система зеркал, равномерно рассеивающих свет по поверхности.
Свет от ламп проходит сквозь первую подложку, служащую поляризационным фильтром. На обеих подложках проделаны параллельные бороздки, определяющие исходную ориентацию жидких кристаллов. Бороздки двух подложек перпендикулярны между собой. Размещенные между бороздками капельки ЖК организованы в ячейки. Каждый пиксел изображения состоит из трех ячеек. Вторая подложка также является поляризационным фильтром, поэтому теоретически в исходном состоянии свет наружу не выпускается, так как его плоскость поляризации не совпадает с плоскостью фильтром. Молекулы в нематическом (то есть структурированном) жидком кристалле имеют вытянутую цилиндрическую форму. Благодаря направляющим бороздкам молекулы у противоположных подложек-поляроидов оказываются перпендикулярными друг другу. Чем ближе к центру кристалла, тем меньше угол взаимного поворота молекул. В итоге молекулы образуют пространственную спираль, по которой сворачивается плоскость поляризации света и свет выходит наружу. Такая технология называется скрученным нематическим кристаллом - Nematic (TN). Если молекулы жидких кристаллов попадают в электрическое поле, они выстраиваются между электродами. Электроды расположены на обоих подложках, поэтому поле разворачивает молекулы вдоль силовых линий. Чем сильнее разность потенциалов между электродами, тем меньше поворот вектора поляризации молекулами, тем меньше света выходит наружу. При максимальной разности потенциалов отклонения вовсе не происходит и свет наружу не пропускается.
Принципиальное
устройство ЖК-дисплея технологии TN
Для управления свойствами ячеек к ним подключают электроды, создающие разные электрические поля в отдельных местах экрана (в ячейках). В активной матрице (Active Matrix) ячейки панели подключены к управляющим элементам, образующим матрицу из строк и столбцов. Технология тонкопленочных транзисторов (Thin Film Transistor, TFT) позволила назначить каждой ячейке переключающий транзистор, к коллектору которого подключены резистор и конденсатор. Когда по выбранным строке и столбцу подается управляющее напряжение, оно заряжает конденсатор. Заряд хранится конденсатором до следующего обновления кадра изображения. То есть конденсатор вкупе с транзистором запоминают состояние ячейки после снятия напряжения. Время реакции дисплея с активной матрицей снижено в лучших образцах до 2-10 мс (для пассивной матрицы - около 50 мс). Яркость отдельного элемента изображения остается неизменной весь период демонстрации, поэтому эффекты «замыливания» и дрожания изображения отсутствуют. Именно поэтому для ЖК-мониторов достаточной считается частота регенерации 60 Гц.
