- •1. Устройство процессора
- •2. Архитектура процессоров Pentium 4
- •2. Архитектура процессоров Pentium 4
- •3. Архитектура amd k7(Athlon)
- •4. Архитектура многоядерных процессоров
- •5. Процессоры ibm power
- •6. Семейство процессоров via
- •7. Семейство процессоров Transmeta
- •8. Форм-факторы системных плат
- •9. Схемотехника системной платы
- •10. Системная память
- •10.1 Динамическая и статическая память
- •10.2 Статическая память
- •10.3 Динамическая асинхронная память dram
- •10.4 Динамическая синхронная память sdram
- •10.5 Память ddr sdram
- •10.6 Память ddr2 sdram
- •10.7 Память ddr3 sdram
- •10.8 Память fb-dimm
- •10.9 Память dr dram
- •10.10 Микросхемы памяти
- •10.11 Модули памяти
- •10.12 Маркировка
- •11. Корпус
- •1. Внутренние интерфейсы
- •1.1 Системная шина gtl
- •1.2 Шина HyperTransport
- •1.3 Шина чипсета
- •1.4 Шина isa/eisa
- •1.5 Шина pci
- •1.6 Шина agp
- •1.7 Шина pci Express
- •1.8 Шина ata (ide)
- •1.9 Шина Serial ata
- •1.10 Шина scsi
- •1.11 Интерфейс acpi
- •2. Внешние интерфейсы
- •2.1 Шина сом
- •2.2 Интерфейс IrDa
- •2.3 Шина lpt
- •2.4 Шина usb
- •2.5 Шина FireWire
- •2.6 Порт Bluetooth
- •1. Графические ускорители
- •2 Устройство видеоадаптера
- •3. Технология sli
- •4. Программные интерфейсы
- •5.1 Вершинные шейдеры
- •5.2 Пиксельные шейдеры
- •6. Графический процессор
- •6.1 Первое поколение графических процессоров (1995-1997)
- •6.2 Второе поколение (1997-1999)
- •6.3 Поколение DirectX 7 (1999-2002)
- •6.4 Поколение DirectX 8
- •6.5 Поколение DirectX 9
- •6.6 Поколение DirectX 10
- •7. Телевизионные тюнеры
- •7.1 Устройство тв-тюнера
- •8. Устройство видеозахвата
- •9. Мониторы
- •9.1 Мониторы на элт(crt)
- •9.2 Параметры мониторов элт
- •9.3 Жк дисплеи
- •9.4 Технологии производства активных матриц
- •9.5 Параметры жк-дисплеев
- •11. Мультимедийные проекторы
- •1. Аудиосистема
- •2. Цифровая обработка звука
- •3. Пространственное звучание
- •4. Устройство звуковой карты.
- •5. Аппаратные средства обработки звука
- •5.1 Кодеки ас'97
- •5.2 Кодеки High Definition Audio
- •5.2 Кодеки High Definition Audio
- •5.3 Кодеки Realtek
- •5.4 Кодеки via
- •5.5 Кодеки nVidia
- •5.6 Кодеки c-Media
- •5.7 Кодеки Analog Devices
- •6. Интерфейс midi
6. Графический процессор
Видеосистема ПК
Архитектура современных графических процессоров опирается на три фундаментальных свойства программ создания полигональной трехмерной графики: • высокая «арифметичность» графических алгоритмов с минимальной долей логических операций; • возможность эффективного распараллеливания графических алгоритмов; • потоковый характер операций графического конвейера. Первичные данные, с которыми оперирует современная компьютерная графика (вершины, матрицы преобразования, значения цвета) относятся к векторному типу. Большинство операций, выполняемых графическим процессором, являются векторными. Графические вектора, как правило, четырехмерные: три цветные компоненты (R, G, В) и степень прозрачности (альфа-канал). Поэтому графические процессоры содержат четырехмерные векторные АЛУ (арифметико-логические устройства), исполняющие операции с компонентами того или иного формата. Операции с цветом и прозрачностью — чисто арифметические, логически данные друг от друга не зависят, поэтому их можно выполнять параллельно, то есть за один шаг. Для этого достаточно иметь один векторный АЛУ и общий блок контрольной логики, обеспечивающий произвольную перестановку компонентов перед вычислениями. В реальных задачах обычны ситуации, когда надо обработать только двумерные векторы или скалярные величины (особенно это касается пиксельных конвейеров и пиксельных алгоритмов). В этом случае вычисления оптимизируются по схеме 2+2 (две операции над двумерными компонентами). Особенность графических алгоритмов в том, что объекты, обрабатываемые в графическом конвейере, как правило, не зависят друг от друга. Например, при обработке вершин треугольника совершенно не важен порядок вычислений. Поэтому в современных графических процессорах может быть несколько вершинных блоков. Обработка пикселов еще лучше поддается распараллеливанию. Как следствие, происходит рост числа пиксельных конвейеров в архитектуре GPU. То есть наращивать мощность графического ускорителя можно простым клонированием вершинных и пиксельных блоков.
6.1 Первое поколение графических процессоров (1995-1997)
Видеосистема ПК
Первое поколение графических ускорителей представлено чипами, которые одинаково хорошо могут жить и на шине PCI, и на шине AGP. То есть их производительность не превосходит пропускной способности шины PCI, и потому вариант AGP ничем не лучше. Среди изделий первого поколения можно выделить модели Voodoo Graphics и Voodoo Rush компании 3Dfx, Riva 128 и Riva 128ZX компании nVidia. Напомним некоторые показатели этих ветеранов. Ядро ускорителя обычно рассчитано на обработку только трехмерных объектов. Как правило, видеоускорители несут на борту 4 Мбайт видеопамяти, встречаются варианты с 8 Мбайт видеопамяти.
6.2 Второе поколение (1997-1999)
Видеосистема ПК
Второе поколение охватывает широкий круг видеокарт, которые нормально работают только на шине AGP, так как их производительность в принципе превышает возможности шины PCI.
У карт второго поколения появились аппаратные конвейеры для одновременной обработки двух текстур, обеспечена поддержка до 64 Мбайт видеопамяти, часто поддерживается 32-битный цвет. Повышенная частота RAMDAC обеспечивает комфортную работу в высоких разрешениях экрана монитора. Глубина Z-буфера возросла до 24-32 бит. Стандартом считается аппаратная поддержка мультитекстурирования, анизотропной фильтрации.
