Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
metod_potentsiala.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
690.69 Кб
Скачать
  1. Категории задач моделирования (прямые и обратные), модели принятия оптимальных ре­шений (в условия определённости и в условиях неопределённости, одноцелевое и многоце­левое принятие решений).

Задачи моделирования делятся на две категории: прямые и обратные.

Прямые задачи отвечают на вопрос, что будет, если при заданных условиях мы выберем какое-то решение из множества допустимых решений. В частности, чему будет равен, при выбранном решении критерий эффективности.

Обратные задачи отвечают на вопрос: как выбрать решение из множества допустимых решений, чтобы критерий эффективности обращался в максимум или минимум.

Остановимся на обратных задачах. Если число допустимых вариантов решения невелико, то можно вычислить критерий эффектности для каждого из них, сравнить между собой полученные значения и непосредственно указать один или несколько оптимальных вариантов. Такой способ нахождения оптимального решения называется "простым перебором". Однако. Когда число допустимых вариантов решения велико, то поиск оптимального решения простым перебором затруднителен, а зачастую практически невозможен. В этих случаях применяются методы "направленного" перебора, обладающие той особенностью, что оптимальное решение находится рядом последовательных попыток или приближений, из которых каждое последующие приближает нас к искомому оптимальному.

Модели принятия оптимальных решений отличаются универсальностью. Их можно классифицировать как задачи минимизации (максимизации) критерия эффективности, компоненты которого удовлетворяют системе ограничений (равенств и/или) неравенств.

Их можно разделить на:

принятие решений в условиях определенности - исходные данные - детерминированные; принятие решений в условиях неопределенности - исходные данные - случайные величины.

А по критерию эффективности: одноцелевое принятие решений (один критерий эффективности); многоцелевое принятие решений (несколько критериев эффективности).

  1. Математическое программирование (линейное, нелинейное, динамическое, теория графов). Сущность линейного программирования.

  1. Постановка и классификация задач линейного программирования.

Линейное программирование – это направление математического программирования, изучающее методы решения экстремальных задач, которые характеризуются линейной зависимостью между переменными и линейным критерием. Необходимым условием постановки задачи линейного программирования являются ограничения на наличие ресурсов, величину спроса, производственную мощность предприятия и другие производственные факторы.

  1. Графическое решение задач линейного программирования (геометрическая интерпрета­ция системы линейных ограничительных уравнений, геометрическая интерпретация целевой функции, вектор

  1. Симплексный метод (назначение метода, приведение системы к предпочтительному виду и построение начального опорного плана - 3 правила).

Назначение метода

В общем виде, когда в задаче участвуют N-неизвестных, можно сказать, что область допустимых решений, задаваемая системой ограничивающих условий, представляется выпуклым многогранником в n-мерном пространстве и оптимальное значение целевой функции достигается в одной или нескольких вершинах. Решить данные задачи графически, когда количество переменных более 3 весьма затруднительно. Существует универсальный способ решения задач линейного программирования, называемый симплекс-методом.

Построение опорного плана

1.При условии отсутствия "0-строк" (ограничений-равенств) и "свободных" переменных (т.е. переменных, на которые не наложено требование не отрицательности).

Если в столбце свободных членов симплексной таблицы нет отрицательных элементов, то опорный план найден.

Есть отрицательные элементы в столбце свободных членов, например bi<0. В такой строке ищем отрицательный коэффициент ail, и этим самым определяем разрешающий столбец l. Если не найдем отрицательный ail, то система ограничений несовместна (противоречива).

В качестве разрешающей выбираем строку, которой соответствует минимальное отношение: , где r - номер разрешающей строки. Таким образом, arl - разрешающий элемент.

После того, как разрешающий элемент найден, делаем шаг модифицированного жорданова исключения с направляющим элементом arl и переходим к следующей симплексной таблице.

2. В случае присутствия ограничений-равенств и "свободных" переменных поступают следующим образом.

Выбирают разрешающий элемент в "0-строке" и делают шаг модифицированного жорданова исключения, после чего вычеркивают этот разрешающий столбец. Данную последовательность действий продолжают до тех пор, пока в симплексной таблице остается хотя бы одна "0-строка" (при этом таблица сокращается).

Если же присутствуют и свободные переменные, то необходимо данные переменные сделать базисными. И после того, как свободная переменная станет базисной, в процессе определения разрешающего элемента при поиске опорного и оптимального планов данная строка не учитывается (но преобразуется).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]