Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Список вопросов для экзамена.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
886.27 Кб
Скачать

  1. Конструктивное выполнение электрических сетей

Для выполнения электрических сетей применяются изолированные и не изолированные провода, кабели, токопроводы. Токопроводом называют устройство предназначенное для канализации энергии при открытой прокладке в производственных и электротехнических помещениях по опорным конструкциям, колоннам и фермам зданий. Стальные провода с большим сопротивлением на разрыв используют для устройства переходов воздушных линий через реки, ущелья при длине пролета больше 1 км

  1. Защита электродвигателей (сам)

1 ЗАЩИТА ЭЛЕКТРОДВИГАТЕЛЕЙ

на двигателях напряжением выше 1000 В должны устанавливаться следующие устройства релейной защиты:

- защита от междуфазных коротких замыканий; - защита от замыканий на землю; - защита от двойных замыканий на землю; - защита от перегрузки.

Для синхронных двигателей дополнительно требуется защита от асинхронного режима. Применяемые для этой цели виды защиты зависят от мощности электродвигателей:

В качестве защиты от междуфазных КЗ при мощности двигателей до 5000 кВт применяется токовая отсечка. При двигателях большей мощности, а также если токовая отсечка для двигателей меньшей мощности не удовлетворяет требованиям чувствительности, применяется дифференциальная защита при условии, что эти двигатели имеют выводы со стороны нейтрали.

В качестве защиты от замыканий на землю при токах замыкания более 5 А для двигателей мощностью более 2000 кВт, и 10 А для двигателей меньшей мощности, применяется токовая защита нулевой последовательности, действующая на отключение. На линиях, питающих двигатели передвижных механизмов, защита от замыканий на землю, по соображениям электробезопасности, должна действовать на отключение независимо от величины тока замыкания на землю. На блоках трансформатор–двигатель защита от замыканий на землю действует на сигнал.

В качестве защиты от двойных замыканий на землю применяется токовая защита нулевой последовательности, действующая на отключение. Она применяется в тех случаях, когда защита от замыканий на землю имеет выдержку времени. Ее применение обязательно, если защита от междуфазных КЗ выполняется в двух фазах.

Для двигателей, работающих в блоке с понижающим трансформатором, может быть выполнена общая защита, если она удовлетворяет требованиям к защите как двигателя, так и трансформатора.

Для облегчения условий самозапуска, а также для предотвращения подачи несинхронного напряжения на возбужденные синхронные двигатели или заторможенные механизмы, двигатели должны быть оборудованы защитой минимального напряжения. Эта защита может быть либо индивидуальной, либо групповой. В ряде случаев для ускорения подачи напряжения на шины, или предотвращения подачи напряжения на двигатели автоматикой внешней сети, синхронные двигатели могут быть дополнительно оборудованы защитой по понижению частоты, так как они способны длительно поддерживать напряжение в сети.

Кроме перечисленных обязательных для двигателей функций защиты, специальные защиты для двигателей имеют дополнительные функции, использование которых улучшает условия эксплуатации двигателя, тем самым снижая вероятность повреждения и продлевая срок его службы. К ним относятся:

- защита от обрыва фазы; - ограничение количества пусков; - запрет пуска по времени прошедшего от предыдущего пуска; - защита минимального тока или мощности;

- защита от заклинивания или затормаживания ротора.

У двигателей большой мощности существуют также технологические защиты, которые могут действовать на отключение двигателей при: повышении температуры двигателя, его подшипников, прекращении смазки подшипников, циркуляции воздуха в системе охлаждения. Необ-ходимость этих защит и предъявляемые к ним требования излагаются в заводской документации. Эти защиты подаются на дискретные входы устройства защиты.

АППАРАТУРА УПРАВЛЕНИЯ И ЗАЩИТЫ ЭЛЕКТРОДВИГАТЕЛЕЙ

Защита электрических двигателей

Защита электродвигателей напряжением до 1000 В осуществляется, как правило, плавкими предохранителями, тепловыми и максимальными токовыми реле.

Защиту электродвигателей напряжением выше 1000 В во всех случаях, когда это возможно, следует осуществлять на переменном оперативном токе.

Максимальная токовая защита от междуфазных коротких замыканий выполнена с одним: реле прямого действия типа РТМ.

н= 1,4-7-1,6 — для защиты, выполненной с реле типа РТМ.

Защита от однофазных замыканий обмотки статора электродвигателя на землю состоит из трансформатора тока нулевой последовательности ТИП, максимального токового реле Т и промежуточного реле П.

Максимальная токовая защита нулевой последовательности действует на отключение выключателя и устанавливается на двигателях, ток замыкания на землю которых составляет 10 А и выше.

Защита от перегрузки выполнена с помощью одного реле максимального тока с зависимой выдержкой времени, включенного на разность токов двух фаз.

Защита от перегрузки действует, как правило, на сигнал или разгрузку механизма.

Выдержку времени защиты принимают равной 10—15 с.

Отключение электродвигателя или группы электродвигателей, питающихся от одной секции шин распределительного устройства, при исчезновении или значительном снижении напряжения осуществляется защитой минимального напряжения.

Защита минимального напряжения отключает двигатели, самозапуск которых недопустим по технологическим условиям или по условиям техники безопасности.

Выдержку времени защиты на отключение неответственных электродвигателей принимают равной 0,5—1 с, а на отключение ответственных двигателей—10—15 с.

Напряжение срабатывания защиты минимального напряжения [/ср = (0>6-5-0,7)1/нон, (29.

6 защита минимального напряжения выполнена с использованием реле напряжения РНВ, встроенного в привод выключателя.

Защита от однофазных замыканий на землю

Согласно требованию действующих правил, все отходящие от подстанций линии напряжением выше 1000 В должны иметь селективную защиту от однофазных замыканий на землю, удовлетворяющую следующим требованиям: защита должна охватывать все электрически связанные сети карьера и других присоединенных потребителей; время срабатывания защиты внутрикарьерных линий (основной) должно быть не более 0,2 с, а резервная защита должна иметь выдержку времени, не превышающую 0,5 с.

В связи с малыми токами однофазных замыканий на землю в карьерных сетях возникают большие трудности в создании надеж- Р ной селективной защиты от одно-фазных замыканий на землю.

Схема токовой защиты на землю в распределительной сети от однофазных замыканий на землю

Селективная защита от однофазных замыканий на землю может быть токовой и направленной

8 показана схема токовой защиты от однофазного замыкания на землю.

Недостатком токовой защиты является то, что селективности ее действия можно достичь при собственных емкостных токах линий (/С1, Icz, fez и т.

Значительно лучше в отношении селективности является направленная защита, т.

защита, реагирующая на направление мощности нулевой последовательности, которое различно в поврежденной и неповрежденной линиях (см.

9 приведена схема направленной защиты от однофазных замыканий на землю.

Схема направленной защиты от однофазных замыканий на землю

В этой защите в настоящее время применяют реле ЗЗП-1м и РЗН-3.

В качестве резервной защиты, которая действует на отключение выключателя В (см.

7), при отказе основных защит линий применяют неселективную защиту, реагирующую на напряжение нулевой последовательности 3U0.

Реле Н срабатывает, своим контактом Н замыкает обмотку реле времени В и, •если не сработает основная защита линий, через 0,4—0,5 с.

Сущность АПВ состоит в том, что отключившаяся под действием релейной защиты линия электропередачи через некоторое время (0,5—1,5 с) снова автоматически включается под напряжение.

Если причина, вызвавшая срабатывание релейной защиты, исчезла, то линия остается в работе.

При отключении выключателя от защиты (контакты РТ1 и РТ2 максимальной токовой защиты и контакт РЗ (земляной защиты) его размыкающий блок-контакт В запускает реле времени РВ1, которое с заданной выдержкой времени своим замыкающим контактом подключает параллельную обмотку промежуточного реле РП1 к конденсатору С.

При включении на короткое замыкание выключатель ВЗ отключится своей максимальной токовой защитой.

В главную цепь автомата включено добавочное сопротивление 6, падение напряжения на котором подается на нагреватель 7 биметаллического расцепителя 5, осуществляющего защиту от токов перегрузки.

Защита от токов короткого замыкания производится максимальным расцепителем 8.

Для защиты силовых цепей электродвигателей, как правило, используют автоматы с комбинированными расцепите-лями.

Для защиты электродвигателей постоянного тока, а также асинхронных двигателей с фазным ротором при пусковых токах, не превышающих двух- трехкратного значения номинального, автоматы с кратностью отсечки 7—14 по отношению к номинальному току расцепителя не рекомендуется применять.

При защите двигателей с короткозамкнутым ротором номинальный ток расцепителя автомата должен быть таким, чтобы каталожное значение тока отсечки автомата было не менее чем в 1,5 раза больше пускового тока двигателя.

В силовой цепи двигателя, имеющего дополнительную защиту от перегрузки в виде теплового реле, для регулирования уставки последнего в обе стороны и исключения ложного срабатывания автомата от перегрузки номинальный ток комбинированного расцепителя должен не менее чем на одну ступень превышать номинальный ток теплового элемента реле.

Реле управления и защиты

Реле принято подразделять на две основные группы: реле управления и реле защиты.

Реле управления и защиты: а — электромагнитное реле времени; б — тепловое реле ная медная демпферная гильза 2, в которой при протекании по катушке 15 тока наводится э.

Так, для защиты от токов короткого замыкания и перегрузок предназначены реле РТ-80 и РТ-90, которые по принципу действия являются комбинированными и состоят из двух элементов — индукционного с выдержкой времени и электромагнитного мгновенного действия, создающего отсечку при больших значениях тока.

Для защиты от повышения или понижения напряжения применяются реле напряжения РН.

Для защиты от замыканий на заземленный корпус электрооборудования предназначены реле тока РТЗ-50.

В схемах автоматической, полуавтоматической и ручной синхронизации синхронных генераторов и компенсаторов для защиты от повышения или понижения частоты (при разности частот ± 1 Гц) применяются реле разности частот ИРЧ и т.

Электропромышленностью осваивается выпуск бесконтактных пускателей на кремниевых управляемых вентилях (тиристорах) с необходимым комплексом защит электродвига_l____________Jmon Вперед~ Назад

Защита от токов короткого замыкания в силовой цепи осуществляется предохранителями Пр1 и Пр2.

Защита при обрыве жилы заземления осуществляется элементами схемы, которые выбраны так, что при определенном сопротивлении жилы заземления ток управления тиристора Д5 вполне достаточен для его открытия.

Защита двигателя от коротких замыканий осуществляется предохранителями Пр, от перегрузки — тепловыми реле РТ1

Защита от снижения- напряжения — контактором Л, якорь которого отпадает при снижении напряжения сети ниже допустимой величины.

1.2 ЗАЩИТА ДВИГАТЕЛЕЙ ОТ МЕЖДУФАЗНЫХ КЗ

Защита от КЗ между фазами является основной РЗ электродвигателей, и установка ее обязательна во всех случаях. В качестве РЗ электродвигателей мощностью до 5000 кВт от КЗ, согласно ПУЭ, применяется МТЗ (токовая отсечка). Наиболее просто токовая отсечка выполняется с реле прямого действия, встроенными в привод выключателя. Для работы при всех видах междуфазных КЗ отсечка должна выполняться в двух фазах.

Токовая отсечка должна быть отстроена от пускового тока двигателя. В момент включения двигателя появляется бросок тока намагничивания, в 1,6ч1,8 раза превышающий по амплитуде установившийся пусковой ток двигателя. Это бросок учитывается повышенным коэффициентом надежности при отстройке от пускового тока двигателя.

Если ток срабатывания отсечки отстроен от пускового тока электродвигателя, то она надежно отстроена и от тока, который электродвигатель посылает в сеть при внешнем КЗ.

Токовую РЗ электродвигателей мощностью до 2000 кВт ранее выполняли на простой и дешевой однорелейной схеме, включая реле на разность токов двух фаз. Недостатком этой схемы является более низкая чувствительность по сравнению с двухрелейной отсечкой, к двухфазным КЗ между одной из фаз, на которых установлен ТТ, и фазой без ТТ. Ток срабатывания реле отсечки, выполненной по однорелейной схеме, в 3 раз больше, чем в двухрелейной схеме: при выборе уставки учитывался коэффициент схемы при симметричном пусковом режиме.

На электродвигателях мощностью 2000-5000 кВт токовую отсечку необходимо выполнять двухрелейной. Двухрелейную схему отсечки требуется также применять на электродвигателях мощностью до 2000 кВт, если коэффициент чувствительности однорелейной схемы при двухфаз-ном КЗ на выводах электродвигателя окажется менее двух (kч < 2). При использовании реле УЗА-АТ или УЗА-10 отсечка выполняется 2–элементной, независимо от мощности двигателя.

На электродвигателях мощностью 5000 кВт и более должна дополнительно устанавливается продольная дифференциальная РЗ, обеспечивающая более высокую чувствительность к КЗ на выводах и в обмотках (Iсз . Iном). Если токовая отсечка не обладает необходимой чувствительностью, то дифзащита может выполняться и на двигателях меньшей мощности, при условии наличия на двигателе выводов фаз со стороны нейтрали.

Для этого применяются специальные дифференциальные реле, включаемые на комплекты трансформаторов тока, соединенные в неполную звезду на сторонах выводов и нейтрали двигателей. Защита выполняется двухфазной. Могут использоваться реле РНТ-565, ДЗТ-11 или РСТ-15 ЧЭАЗ, MX3DPG3A, MiCOM P631, P632 фирмы ALSTOM.

Поскольку РЗ в двухфазном исполнении не реагирует на двойное замыкание на землю, одно из которых возникает в обмотке электродвигателя на фазе В, в которой отсутствует ТТ, дополнительно устанавливается специальная РЗ от двойных замыканий на землю, которая выполняется токовым реле, подключенным к ТТНП. Эта функция может выполняться защитой от замыкания на землю, если она не имеет выдержки времени.

1.3 ЗАЩИТА ЭЛЕКТРОДВИГАТЕЛЕЙ ОТ ПЕРЕГРУЗКИ

Перегрузка электродвигателей возникает при затянувшемся пуске и самозапуске, из-за перегрузки приводимых механизмов. Перегрузка может возникнуть также при пониженном на-пряжении на выводах двигателя. Для электродвигателя опасны только устойчивые пере-грузки. Сверхтоки, обусловленные пуском или самозапуском электродвигателя, кратковре-менны и самоликвидируются при достижении нормальной частоты вращения.

Значительное увеличение тока электродвигателя получается также при обрыве фазы, что встречается, например, у электродвигателей, защищаемых предохранителями, при перегорании одного из них. При номинальной загрузке в зависимости от параметров электродвигателя увеличение тока статора при обрыве фазы будет составлять примерно (1,6ч2,5) Iном. Эта перегрузка носит устойчивый характер. Также устойчивый характер носят сверхтоки, обусловленные механическими повреждениями электродвигателя или вращаемого им механизма и перегрузкой механизма. Основной опасностью сверхтоков является сопровождающее их повышение температуры отдельных частей, и в первую очередь, обмоток. Повышение температуры ускоряет износ изоляции обмоток и снижает срок службы двигателя. Перегрузочная способность электродвигателя определяется характеристикой зависимости между сверхтоком и допускаемым временем его прохождения:

При решении вопроса об установке РЗ от перегрузки и характере ее действия руководствуются условиями работы электродвигателя, имея в виду возможность устойчивой перегрузки его приводного механизма:

а) на электродвигателях механизмов, не подверженных технологическим перегрузкам (например, электродвигателях циркуляционных, питательных насосов и т. п.) и не имеющих тяжелых условий пуска или самозапуска, РЗ от перегрузки может не устанавливаться; однако, ее установка целесообразна на двигателях объектов, не имеющих постоянного обслуживающего персонала, учитывая опасность перегрузки двигателя при пониженном напряжении питания или неполнофазном режиме;

б) на электродвигателях, подверженных технологическим перегрузкам (например, электродвигателях мельниц, дробилок, багерных насосов и т. п.), а также на электродвигателях, самозапуск которых не обеспечивается, РЗ от перегрузки должна устанавливаться;

в) защита от перегрузки выполняется с действием на отключение в случае, если не обеспечивается самозапуск электродвигателей или с механизма не может быть снята технологическая перегрузка без останова электродвигателя;

г) защита от перегрузки электродвигателя выполняется с действием на разгрузку механизма или сигнал, если технологическая перегрузка может быть снята с механизма автоматически или вручную персоналом без останова механизма, и электродвигатели находятся под наблюдением персонала;

д) на электродвигателях механизмов, могущих иметь как перегрузку, устраняемую при работе механизма, так и перегрузку, устранение которой невозможно без останова механизма, целесообразно предусматривать действие РЗ от сверхтоков с меньшей выдержкой времени на отключение электродвигателя; в тех случаях, когда ответственные электродвигатели собственных нужд электростанций находятся под постоянным наблюдением дежурного персонала, защиту их от перегрузки можно выполнить с действием на сигнал.

Защита с тепловым реле

Лучше других могут обеспечить характеристику, приближающуюся к перегрузочной характеристике электродвигателя, тепловые реле, которые реагируют на количество тепла Q, выделенного в сопротивлении его нагревательного элемента. Тепловые реле выполняются на принципе использования различия в коэффициенте линейного расширения различных металлов под влиянием нагревания. Основой такого теплового реле является биметаллическая пластина состоящая из спаянных по всей поверхности металлов а и б с сильно различающимися коэффициентами линейного расширения. При нагревании пластина прогибается в сто-рону металла с меньшим коэффициентом расширения и замыкает контакты реле.

Нагревание пластины осуществляется нагревательным элементом при прохождении по нему тока.

Тепловые реле сложны в обслуживании и наладке, имеют различные характеристики отдельных экземпляров реле, часто не соответствуют тепловым характеристикам электродвигателей и имеют зависимость от температуры окружающей среды, что приводит к нарушению соответствия тепловых характеристик реле и электродвигателя. Поэтому, тепловые репе применяются в редких случаях, обычно в автоматах 0,4 кВ.

Защита от перегрузки с токовыми реле

Для защиты электродвигателей от перегрузки обычно применяются МТЗ с использованием реле с ограниченно зависимыми характеристиками типа РТ-80, или МТЗ с независимыми токовыми реле и реле времени.

Преимуществами МТЗ по сравнению с тепловыми являются более простая их эксплуатация и более легкий подбор и регулировка характеристик РЗ. Однако, МТЗ не позволяют использовать перегрузочные возможности электродвигателей из-за недостаточного времени действия их при малых кратностях тока.

Максимальная токовая РЗ с независимой выдержкой времени в однорелейном исполнении обычно применяется на всех асинхронных электродвигателях собственных нужд тепловых и атомных электростанций, а на промышленных предприятиях - для всех синхронных (когда она совмещена с РЗ от асинхронного режима) и асинхронных электродвигателей, являющихся приводами ответственных механизмов, а также для неответственных асинхронных электродвигателей с временем пуска более 12–13 с.

РЗ от перегрузки с зависимой выдержкой времени лучше согласовываются с тепловой характеристикой двигателя, однако и они недостаточно используют перегрузочную способность двигателей в области малых токов.

Время пуска асинхронных электродвигателей обычно составляет 10–15 с. Поэтому характеристика реле с зависимой характеристикой типа УЗА-АТ должна иметь при пусковом токе время, не меньшее 12–15 с. Выбирается характеристика 3 – крутая. На РЗ от перегрузки с независимой характеристикой выдержка времени принимается 12–20 с.

1.4 ЗАЩИТА ДВИГАТЕЛЕЙ ОТ ЗАМЫКАНИЯ НА ЗЕМЛЮ

В соответствии с ПУЭ, РЗ от замыканий на землю в обмотке статора с действием на отключение устанавливается на электродвигателях мощностью 2000 кВт и более при токах замыкания на землю более 5 А, а на электродвигателях меньшей мощности – при токах замыкания на землю более 10 А. В эксплуатации, однако, при токах замыкания на землю более 5 А, РЗ от замыканий на землю часто устанавливают на электродвигателях любой мощности, что способствует ограничению их повреждений при замыканиях на землю.

Защита от замыканий на землю реагирует на емкостный ток сети и выполняется с помощью одного токового реле, которое подключается к ТТ нулевой последовательности (ТТНП), установленному на кабеле, питающем двигатель. Применяются ТТНП типов ТЗ, ТЗЛ, ТЗЛМ и др. Описание схемы установки защиты приводилось в главе 6.

В случае, когда питание электродвигателя осуществляется по нескольким параллельным кабелям (двум-четырем), вторичные обмотки ТТНП, надетые на каждый из них, соединяются последовательно или параллельно.

На электродвигателях большой мощности, для питания которых прокладывается больше четырех кабелей, РЗ от замыканий на землю выполняется с одним общим ТТНП типа ТНПШ с подмагничиванием, аналогично защите генераторов.

Ток срабатывания РЗ выбирается на основании тех же соображений, что и для аналогичной РЗ кабельных линий, реагирующих на емкостный ток (50 Гц)

В целях уменьшения перенапряжений при замыканиях на землю в сети собственных нужд (СН) энергоблоков ТЭС и АЭС большой мощности, а также повышения чувствительности и селективности действия РЗ электродвигателей 6 кВ и трансформаторов СН 6,3/0,1 кВ, эти сети могут работать с нейтралью, заземленной через резистор. Для этого на каждой секции блочных СН 6,3 кВ устанавливается дополнительный заземляющий трансформатор (ДТ), например типа ТСЗК-63, со схемой соединения обмоток звезда с заземленной нейтралью - треугольник. В нейтраль ДТ включаются параллельно два высоковольтных заземляющих рези-стора, по 200 Ом каждый, изготовленные из специального электротехнического бетона (бетела). При этом, в случае однофазного замыкания на землю в двигателе по его цепи будет протекать активный ток 3I0 = 35ч40 А (достаточный для надежного действия защиты и допустимый по условию ограничения повреждения в двигателе от тока замыкания на землю). Одновременно по цепям неповрежденных элементов, присоединенных к тем же шинам, будут протекать только емкостные токи нулевой последовательности, от которых защиты рассматриваемых присоединений могут быть легко отстроены. Наличие заземляющих резисторов резко снижает вероятность перехода однофазных замыканий на землю в двухфазные и двойные КЗ.

Защита электродвигателя от замыканий на землю, как и ранее, выполняется с помощью токового реле, подключенного к ТТНП и действующего на отключение электродвигателя без выдержки времени. При отказе защиты от замыканий на землю или выключателя на поврежденном присоединении, или при замыкании Кз(1) на шинах секции имеется опасность повреждения заземляющих сопротивлений R в нейтрали дополнительного трансформатора ДТ (рис. 9.7, б). Для исключения этого на ДТ предусматривается защита нулевой последовательности (КА, КТ), действующая с выдержкой времени 0,6 с на отключение трансформатора (линии), питающего секцию 6 кВ.

3) Искусственные и естественные заземлители и заземляющие проводники

В первую очередь для заземления электроустановок используют естественные заземлители: металлические части (арматуру) железобетонных конструкций (фундаментов опор линий электропередач и подстанций, фундаментов зданий); металлические подземные коммуникации (трубопроводы, броню и оболочки кабелей); наземные коммуникации (рельсовые пути) и др. Если естественные заземлители обеспечивают выполнение требований, предъявляемых к параметрам заземляющих устройств, то искусственные заземлители применяют, если необходимо уменьшить токи, протекающие по естественным заземлителям или стекающие с них в землю. Это значит, что в ряде случаев можно ограничиться использованием естественных заземлителей и отказаться от искусственных, что снижает затраты материалов и труда при монтаже и облегчает эксплуатацию заземляющих устройств.

Использование железобетонных фундаментов зданий в качестве заземлителей в настоящее время считается возможным лишь в грунтах влажностью не менее 3 % (из-за высокого электрического сопротивления бетона при меньшей влажности) и только при воздействии на фундаменты неагрессивных или слабоагрессивных грунтовых вод при отсутствии гидроизоляции или при защите поверхности фундаментов битумным (либо битумно-латексным) покрытием в соответствии с требованием СНиП И-28-73.

Нельзя использовать в заземляющих устройствах находящиеся в средне- или сильноагрессивных средах железобетонные конструкции (это может усилить коррозию конструкций), железобетонные конструкции (плиты, балки, фермы, колонны) с напрягаемой арматурой, а также металлические и железобетонные конструкции зданий, относимых к первой категории по молниезащите, для защиты этих зданий от прямых ударов молний.

С учетом приведенных ограничений использование конструкций зданий в качестве заземляющих устройств дало на ряде объектов возможность полностью отказаться от выполнения искусственных заземлителей в грунте, резко сократить протяженность заземляющих проводников внутри зданий и получить существенный экономический эффект.

Все элементы металлических и железобетонных конструкций (фундаментов, колонн, ферм, стропильных, подстропильных и подкрановых балок) в заземляющих устройствах соединяют так, чтобы имелась непрерывная электрическая цепь по металлу. В железобетонных колоннах, кроме того, предусматривают закладные детали на каждом этаже здания для подсоединения заземляемого электрического и технологического оборудования. Имеющиеся в зданиях сварные, а также болтовые или заклепочные соединения металлических колонн, ферм и балок достаточны для непрерывности электрической цепи. В местах, где отдельные элементы металлоконструкций не имеют таких соединений, предусматривают приварку гибких перемычек сечением не менее 100 мм2.

Сборные железобетонные фундаменты рекомендуется использовать в качестве заземлителей, если есть возможность соединения арматуры отдельных блоков между собой.

Вертикальную арматуру свай в свайных фундаментах соединяют с арматурой ростверка или фундаментных блоков электродуговой сваркой. Пространственные металлические каркасы колонн и стаканов фундаментов, а также арматурные сетки их подошв сваривают точечной сваркой на контактных машинах.

Закладные детали (изделия) рекомендованы в виде отрезков из угловой стали 63x63x5 длиной 60 мм, привариваемых к арматуре и выступающих на поверхность бетона; металлические перемычки — в виде стержней диаметром не менее 42 мм, привариваемых к закладным деталям.

Разработана методика расчета сопротивления фундаментов, используемых в качестве заземлителей и выравнивающих проводников.

В случае если на здании сооружается молниеприемная сетка, ее соединяют перемычками в непрерывную электрическую сеть с колоннами, используемыми в качестве токоотводов, и фундаментами, используемыми в качестве заземлителей. К сетке присоединяют все выступающие над кровлей металлические устройства (вентиляционные шахты и др.).

Металлические перемычки нужно устанавливать при использовании в качестве естественных заземлителей труб водопровода на водомерах и задвижках. Если при ремонте необходимо снять перемычку, заранее должна быть установлена другая. Присоединять заземляющие проводники от электрооборудования к линии водопровода нужно за водомером. Использовать трубопровод канализации не разрешается, так как канализационные трубы не имеют надежного электрического контакта в стыках.

Естественными заземлителями на подстанциях могут быть железобетонные стойки, изготовленные из электротехнического бетона.

В качестве естественных заземлителей на линиях электропередачи используются железобетонные подножники и сваи в наиболее распространенных грунтах с удельным сопротивлением до 300 Ом-м, т.е. глинах, супесях. Наблюдения и исследования показали, что не только в таких, но и в песчаных и скальных грунтах наблюдается постоянное увлажнение бетона за счет капиллярного подсоса влаги из прилегающих слоев земли, вследствие чего железобетонные фундаменты через несколько месяцев после их установки становятся естественными заземлителями с мало меняющимися в течение года значениями сопротивлений. Это дало основание рекомендовать их использование в грунтах с сопротивлением до 1000 Ом-м, что дает экономию металла и затрат.

Кроме описанных естественных заземлителей, ими могут служить и другие, например металлические трубопроводы для негорючих жидкостей, обсадные трубы артезианских колодцев.

Во всех случаях применения естественных заземлителей протекающие при коротком замыкании токи не должны превышать допустимых для каждого элемента заземлителя в течение всей эксплуатации электроустановки.