Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПРАК РАБ 8 ЭМИ.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
512.49 Кб
Скачать

Федеральное агентство связи Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования «Сибирский государственный университет телекоммуникаций и информатики» (ФГОБУ ВПО «СибГУТИ»)

Кафедра безопасности жизнедеятельности и экологии

Практическая работа № 8

Исследование физических свойств электромагнитного излучения

г. Новосибирск. 2013 г.

ЗАДАНИЕ № 8

Исследование физических свойств электромагнитного излучения

Цель работы: Исследование физических свойств источников электромагнитного излучения (ЭМИ)

Порядок выполнения.

  1. Ознакомиться и законспектировать общие сведения о

  2. Вычислить среднюю мощность излучения.

  3. Определить размер санитарно-защитной зоны.

  4. Определить значение плотности потока энергии (ППЭ) в зоне жилой застройки.

  5. Определить, время безопасного нахождения в зоне.

  6. Построить схему распространения электромагнитных волн и размеры санитарно-защитных зон на основе фрагмента карты «Дубль-ГИС».

ОБЩИЕ СВЕДЕНИЯ

Оборудование и системы, которые генерируют, передают и используют электрическую энергию, создают в окружающей среде электромагнитные поля. Кроме искусственных источников электромагнитного излучения (ЭМИ) существуют и естественные - космос, Земля. Спектр ЭМИ природного и техногенного происхождения, оказывающий влияние на человека как в условиях быта, так и в производственных условиях, достаточно широк. Характер воздействия на человека ЭМИ в разных диапазонах различен.

Электромагнитный спектр от инфранизких до сверхвысоких частот условно разделяется на диапазон по частоте колебаний или длине волны таблица 1.

Таблица 1 - Спектр электромагнитных колебаний от инфранизких до сверхвысоких частот.

Диапазон частот

Диапазон волн

Частота колебаний

Длина волны

Низкие частоты (НЧ)

инфранизкие

низкие

промышленные

звуковые

0,003 - 0,3 Гц

0,03 - 3,0 Гц

3 - 300 Гц

300Гц - 30 кГц

107 - 10 6 км

106 - 104 км

104 - 102 км

102 - 10 км

Высокие частоты (ВЧ)

длинные

средние

короткие

30 - 300 кГц

300кГц - 3 МГц

3-30 МГц

10 - 1 км

1км - 100 м

100 - 10 м

Ультравысокие частоты (УВЧ)

ультракороткие

30 -300Мгц

10 - 1 м

Сверхвысокие частоты (СВЧ)

дециметровые

сантиметровые

миллиметровые

300Мгц - 3ГГц

30 - 300ГГц

30 - 300ГГц

100 - 10см

10 - 1 см

10 - 1 см

Электромагнитное поле диапазона радиочастот обладает рядом свойств, которые широко используются в разных отраслях.

Высокочастотное электромагнитное поле образуется в рабочих помещениях во время работы электрических генераторов высокой частоты.

Источниками излучения электромагнитных волн в радиотехнических установках могут быть генераторы электромагнитных колебаний, антенные устройства, отдельные СВЧ-блоки (линии передач от генератора к антенне, отверстия и щели в сочленениях тракта передачи энергии волн).

Работы с источниками ультравысоких частот выполняются в радиосвязи, радиовещании, медицине, телевидении: при конструировании и опытной эксплуатации передатчиков на передающих радио- и телецентрах, в физиотерапевтических кабинетах для диатермии и индуктотермии.

Работы с источниками сверхвысокой частоты осуществляются в радиолокации, радионавигации, радиоастрономии: в процессе отработки и испытании блоков, узлов макетов радиолокационных станций в условиях конструкторских бюро и научно-исследовательских институтов; при ремонте радиолокационной аппаратуры в мастерских; при регулировке, настройке, испытании и проверке отдельных элементов узлов и приборов СВЧ - аппаратуры в производственной обстановке: для целей навигации судов различного назначения(пассажирские, транспортные, промысловые, технические, научно-исследовательские); в гидрометеорологической службе для обнаружения, наблюдения и определения места расположения облачных систем, грозовых очагов; для радиорелейной связи и др.

Основными параметрами электромагнитных колебаний являются длина волны , частота колебаний f и скорость распространения колебаний с:

 = с / f, (1)

Электромагнитное поле - совокупность как переменного электрического, так и неразрывно с ним связанного магнитного поля.

Интенсивность электромагнитного поля на рабочих местах зависит от мощности генератора, расстояния рабочего место от источника излучения и отражений от различных металлических поверхностей.

Вокруг источника излучения волн схематически можно выделить три зоны: ближнюю - зону индукции, промежуточную - зону интерференции и дальнюю - зону излучения. Соотношения электрической и магнитной составляющих в этих зонах не одинаковы.

В зоне индукции работающие подвергаются воздействию различных по величине электрических и магнитных полей, поэтому их интенсивность оценивается раздельно, величинами напряженности электрической Е и магнитной Н составляющей в вольтах на метр (В/м) для электрического и в амперах на метр (А/м) для магнитного поля. Эти поля имеют место при работе с источниками низко-, высоко- и ультравысокочастотных излучений.

Работающие с высокочастотной аппаратурой практически находятся в волновой зоне. Интенсивность поля оценивается величиной плотности потока энергии - количеством энергии, падающей на единицу поверхности, и выражается в ваттах на квадратный метр (Вт/м2) или в милли- и микроваттах на квадратный сантиметр (мВт/см2, мкВт/см2).

Природные источники электромагнитных полей. Природные источники электромагнитных полей делят на две группы.

Первая - поле Земли - постоянное электрическое и постоянное магнитное поле.

Вторая группа - радиоволны, генерируемые космическими источниками (Солнце, звезды и т.д.), атмосферные процессы - разряды молний и т.д. Естественное электрическое поле Земли создается избыточным отрицательным зарядом на поверхности; его напряженность обычно от 100 до 500 В/м. Грозовые облака могут увеличивать напряженность поля до десятков, а то и сотен кВ/м. Вторая группа природных электромагнитных полей характеризуется широким диапазоном частот.

Антропогенные источники эмп можно разделить на следующие группы:

– системы производства, передачи, распределения и потребления электроэнергии постоянного и переменного тока (0-3 кГц): электростанции, линии электропередачи (ВЛ), трансформаторные подстанции, системы электроснабжения, бытовые приборы

– транспорт на электроприводе (0-3 кГц) : железнодорожный транспорт и его инфраструктура, городской транспорт - метрополитен, троллейбусы, трамваи и т. п. – является относительно мощным источником магнитного поля в диапазоне частот от 0 до 1000 Гц. Максимальные значения плотности потока магнитной индукции В в пригородных "электричках" достигают 75 мкТл при среднем значении 20 мкТл.

– функциональные передатчики: радиовещательные станции низких частот (30 - 300 кГц), средних частот (0,3 - 3 МГц), высоких частот (3 - 30 МГц) и сверхвысоких частот (30 - 300 МГц); телевизионные передатчики; базовые станции систем подвижной (в т. ч. сотовой) радиосвязи; наземные станции космической связи; радиорелейные станции; радиолокационные станции и т. п.

Электромагнитное излучение (электромагнитные волны) — распространяющееся в пространстве возмущение электрических и магнитных полей Основными характеристиками электромагнитного излучения принято считать частоту и длину волны. Длина волны зависит от скорости распространения излучения. Скорость распространения электромагнитного излучения (фазовая) в вакууме равна скорости света, в других средах эта скорость меньше. Электромагнитные волны — это поперечные волны (волны сдвига), в которых вектора напряжённостей электрического и магнитного полей колеблются перпендикулярно направлению распространения волны, но они существенно отличаются от волн на воде и от звука тем, что их можно передать от источника к приемнику, в том числе и через вакуум.

Электромагнитное излучение принято делить по частотным диапазонам. Между диапазонами нет резких переходов, они иногда перекрываются, а границы между ними условны. Поскольку скорость распространения излучения постоянна, то частота его колебаний жёстко связана с длиной волны в вакууме.

Распространение электромагнитных волн, временны́е зависимости электрического E (t) и магнитного H (t) полей, определяющий тип волн (плоские, сферические и др.), вид поляризации и прочие особенности зависят от источника излучения и свойств среды.

Таблица 2. Диапазоны электромагнитного излучения

Вид излучения

Длина волны, м

Частота волны, Гц

радиоволны

103 – 104

3·105 – 3·1012

световые волны:

1) Инфракрасное

излучение

2) Видимый свет

3) Ультрафиолетовое излучение

5·10-4 – 8·10-7

8·10-7– 4·10-7

4·10-7 – 10-9

6·1011 – 3,75·1014

3,75·1014 – 7,5·1014

7,5·1014 – 3·1017

рентгеновское излучение

2·10-9 – 6*10-12

1,5·1017 – 5·1019

гамма-излучение

<6·10-12

>5·1019

Электромагнитные излучения различных частот (таблица 2) взаимодействуют с веществом также по-разному. Процессы излучения и поглощения радиоволн можно описать с помощью соотношений электродинамики; а для волн оптического диапазона и жестких лучей необходимо учитывать их квантовую природу.

Электромагнитный смог-это загрязнение среды обитания человека неионизирующими излучениями от устройств использующих, передающих и генерирующих электромагнитную энергию и возникающие из-за несовершенства техники и/или нерационального ее применения.

Электромагнитный смог можно классифицировать на три вида:

– смог открытой местности (уличный),

– смог в помещениях (от осветительной системы),

– смог от устройств мобильной связи.

Электромагнитное загрязнение открытой местности возможно от различных передающих радиотехнических объектов (ПРТО), высоковольтных линий электропередачи, от использования неоновой и иной рекламы, проводов электротранспорта, электрифицированных железных дорог. Чтобы создать достаточно высокие уровни поля на открытой местности, необходимы очень мощные источники. Электромагнитный смог от функциональных передатчиков отличается по источнику и по действию, основным источником являются средства сотовой связи – сотовые телефоны и базовые станции связи.

Причиной внутреннего смога в помещениях являются паразитарные наслоения на синусоиду тока промышленной частоты. Известно, что в нашей стране используется две системы электроснабжения: промышленная, трехфазная (380 В), и осветительная, двухфазная (220 В). Правила эксплуатации, соответствующие стандарты требуют заземления всех элементов силовой промышленной сети. Для осветительной сети требование заземления или зануления распространяется только на распределительные устройства – от подстанций 0,4 кВ до распределительных коробок. Розетки, выключатели, большинство приборов не подлежат этому заземлению, и они становятся излучателями паразитарных токов, а практически, источниками электромагнитного смога.