
- •Цели и задачи дисциплины, её место в учебном процессе
- •Содержание
- •1 Введение
- •Новые технологии и общественный риск
- •Физика реактора
- •Деление ядра 236u после захвата нейтрона ядром u235. Возникающая при этом деформация приводит к разрыву ядра
- •Спектр нейтронов деления
- •Сечения деления чётно-чётных изотопов урана и тория
- •Зависимость сечений деления и радиационного захвата естественной смеси изотопов урана от энергии нейтронов Среднее число нейтронов при делении тепловыми нейтронами
- •Выделение энергии при цепной реакции деления При одном акте деления выделяется около 200 МэВ 3,1*10-11 Дж.
- •Радиоактивность
- •Виды радиоактивного распада
- •Прохождение излучения через вещество
- •Устройство ядерного энергетического реактора
- •Принципиальные причины опасности ядерных реакторов:
- •Условия возникновения и развития цепной реакции деления. Коэффициент размножения.
- •Где sf и sa - микроскопические сечения деления и поглощения
- •Сечения поглощения и деления для тепловых нейтронов
- •Захват n0 в уране приведет к испусканию Noh быстрых нейтронов в
- •Замедление и диффузия нейтронов в реакторе. (нужна для вычисления p)
- •Тепловые нейтроны
- •Описание месторождения
- •Вероятность избежать резонансного поглощения
- •Функционирование
- •Нестационарный ядерный реактор Уравнения кинетики и реактивность.
- •Точечная модель кинетики реактора
- •Обратные связи по реактивности
- •0 5 10 20 30 T часы
- •Управление реактором
- •Тепловыделение и отвод тепла в ядерных реакторах
- •Механизмы переноса тепла
- •Теплоотдача
- •D Tжид Tстен
- •Неуправляемая цепная реакция.
- •Почему прекратилась сцр ?
- •Ядерная энергетика и окружающая среда
- •238U (период полураспада 4,47109 лет),
- •232Тh ( период полураспада 1, 411010 лет ),
- •235U (период полураспада 7,04108лет).
- •Космогенные радионуклиды.
- •Ядерный топливный цикл
- •Уровни загрязнения почвы за счёт деятельности аэс не отличаются от загрязнений от глобальных выпадений Пример комбината «Маяк»
- •1970 Г 90Sr в донных отложениях до 108 Бк/г, a-активность до 105 Бк/г
- •2000 Г 90Sr, 137Cs в воде - 2104 Бк/г, a-активность 1102 Бк/г
- •Л10 13 05 13 (понедельник!)
- •155 Лейкозов, из которых 50 радиационных;
- •55 Раков щж, из которых 12 радиационных:
- •26 МГр/год (допустимая доза професcионалов 20 мГр/год)
- •Ядерная энергетика и общественный риск
- •Число несчастных случаев в России на 1000 занятых в 1999
- •Офэкт - Гамма камера
- •Сцинтилляционные детекторы с кристаллом NaJ(Tl)
- •Позитронно-эмиссионная томография (пэт)
- •Принцип пэт
- •Пэт камера Принцип конструкции
- •Сцинтилляторы
- •Электроника
- •События, регистрируемые камерой пэт
- •Размеры отдельного кристалла
- •Пример изображения
- •Типы ускорителей заряженных частиц и принципы их работы.
- •Рентгеновская трубка
- •Ускорители прямого действия
- •Циклические ускорители
- •Циклотрон
- •Фокусировка.
- •Ip внутри камеры - единицы мА и ограничивается условиями теплосъема. С нее. Выводится 10—20% Ip,
- •Синхротрон и изохронный циклотрон
- •Синхротроны
- •Линейные ускорители (лу)
- •Линейный ускоритель электронов (луэ)
- •Общий вид линейного ускорителя электронов луэр-20м
Теплоотдача
Под термином теплоотдача (теплообмен) понимается процесс переноса тепла от охлаждаемой поверхности к омывающему её теплоносителю.
При ламинарном течении частицы жидкости следуют в потоке по вполне определенным плавным траекториям, сохраняя движение в направлении вектора средней скорости потока.
В идеальной жидкости с нулевой вязкостью отсутствуют напряжения сдвига. В вязкой жидкости возможны как нормальные напряжения так и напряжения сдвига. Нормальные напряжения обуславливаются наличием сил давления, а напряжения сдвига вызываются трением между слоями жидкости, движущимися с разными скоростями.
Напряжения сдвига или касательные напряжения в жидкости зависят от градиента скорости.
Нормальная составляющая к неподвижной стенке скорости потока среды равна 0. Экспериментально установлено, что и касательная составляющая скорости равна 0, что является следствием « прилипания» всякой реальной жидкости к твердой поверхности.
Турбулентное течение возникает при увеличении скорости потока когда упорядоченное течение резко нарушается: в потоке возникают пульсации скорости, отдельные объемы) жидкости начинают двигаться поперек потока и даже в обратном направлении к общему осредненному движению.
Возникшее нерегулярное, случайное в отношении малых элементов потока движение является весьма устойчивым.
Движение потока жидкости определяется вполне однозначно, если известны геометрическая конфигурация канала, задаваемая эффективным линейным размером l ( для круглой трубы это диаметр D ), кинематическая вязкость жидкости n и средняя скорость течения жидкости w.
число Рейнольдса Re = wl/n, - критерий режима движения Re< Rек (@ 2000) – ламинарное и возмущения затухают.
Коэффициент теплоотдачи. Количество тепла, приобретаемого или отдаваемого телом, при прочих равных условиях пропорционально разности между его температурой и температурой окружающей среды.
Q = aDT где DT == Тпов - Тжид.
a - коэффициент теплоотдачи Вт/(м2 К).
a находится из эмпирических критериальных зависимостей, которые позволяют перенести экспериментальные данные, полученные в одних условиях на другие. т.е. расширить область применения результатов экспериментов
Ориентировочны |
значения коэффициента теплообмена Вт м-2К-1
|
|
|
Среда |
Свободная конвекция |
Вынужденная конвекция |
|
Газы |
3-100
|
100-2000
|
|
Некипящая вода
|
100-2000
|
500-20000
|
|
Кипящая вода
|
1000-40000
|
500-100000
|
|
Жидкие металлы
|
1000-50000
|
1000-25000
|
|
Конденсация водяного пара
|
1000-200000
|
|