
kossitsky
.pdfнальце способствует усилению экскреции ионов и воды, и тем самым восстановлению водно-солевого равновесия. В отношении реабсорбции воды термин облигатная реабсорбция применим в том смысле, что в проксимальном канальце всегда сохраняется изоосмия, стенка канальца проницаема для воды и объем реабсорбируемой воды определяется только количеством реабсорбируемых осмотически активных веществ, за которыми вода движется по осмотическому градиенту. В конечных частях дистального сегмента нефрона и собирательных трубках проницаемость стенки канальца для воды регулируется антидиуретическим гормоном, при этом факультативная реабсорбция воды зависит от осмотической проницаемости канальцевой стенки, величины осмотического градиента и скорости движения жидкости по канальцу.
Для характеристики транспорта в почечных канальцах различных веществ существенное значение имеет представление о пороге выведения — той концентрации вещества в крови, при которой оно не может быть реабсорбировано полностью. Практически все биологически важные для организма вещества имеют порог выведения. Так, выделение глюкозы с мочой (глюкозурия) наступает тогда, когда ее концентрация в плазме крови превышает 10 моль/л (160—180 мг%). Физиологический смысл этого явления будет раскрыт при описании механизмов реабсорбции.
Непороговые вещества полностью выделяются при любой их концентрации в плазме крови и соответственно в ультрафильтрате. Примером такого вещества может быть полисахарид инулин и шестиатомный спирт маннитол.
Механизмы канальцевой реабсорбции
Обратное всасывание различных веществ в канальцах обеспечивается активным
ипассивным транспортом. Если вещество реабсорбируется против электрохимического
иконцентрационного градиента, процесс называется активным транспортом. Различают два вида активного транспорта — первично-активный и вторично-активный. Первичноактивным транспорт называется в том случае, когда происходит перенос вещества против
электрохимического градиента за счет энергии клеточного метаболизма. Наиболее ярким примером является транспорт ионов Na+, который происходит ари участии фермента Na+, К+-АТФ-азы, использующей энергию АТФ. Вторично-активным называется перенос вещества против концентрационного градиента, но без затраты энергии клетки непосредственно на этот процесс. С помощью такого механизма реабсорбируются глюкоза, аминокислоты. Из просвета канальца эти органические вещества входят в клетку
стенки проксимального канальца с помощью специального переносчика, который обязательно должен присоединить ион Na+. Этот комплекс (переносчик-(-органическое веще- ство-)-ион Na+) перемещается в мембране щеточной каймы и внутри клетки диссоцирует. Фактором переноса этих веществ через апикальную плазматическую мембрану служит меньшая по сравнению с просветом канальца концентрация натрия в цитоплазме
клетки, связанная с непрестанным активным выведением натрия из клетки с помощью Na+, К+-АТФ-азы.
Реабсорбция воды, углекислого газа, некоторых ионов, мочевины происходит по механизму пассивного транспорта. Он характеризуется тем, что перенос вещества происходит по электрохимическому, концентрационному или осмотическому градиенту. Примером пассивного транспорта является реабсорбция в дистальном извитом канальце ионов С1- по электрохимическому градиенту, создаваемому активным транспортом ионов Na+. По осмотическому градиенту транспортируется лишь вода, скорость ее всасывания зависит от осмотической проницаемости стенки канальца и разности концентрации осмотически активных веществ по обеим сторонам ее стенки.
Вследствие всасывания воды и растворенных в ней веществ в содержимом проксимального канальца растет концентрация мочевиньц небольшие количества которой по концентрационному градиенту реабсорбируются в кровь.
Достижения в области молекулярной биологии позволили проникнуть в сущность некоторых клеточных механизмов, обеспечивающих транспорт веществ через стенку
411
канальца. Свойства клеток отделов нефрона различны. Неодинаковы и свойства цитоплазматической мембраны в одной и той же клетке. Апикальная мембрана, обращенлая в просвет канальца, имеет иные характеристики, чем базальная и боковые мембраны клетки, омываемые межклеточной жидкостью и соприкасающиеся с кровеносным капилляром. Вследствие этого апикальная и базальная плазматические мембраны участвуют в транспорте веществ по-разному.
Рассмотрим клеточные механизмы реабсорбции ионов на примере натрия. При введении одного из микроэлектродов в просвет канальца, а- второго — в околоканальцевую жидкость было найдено, что разность потенциалов стенки проксимального канальца оказалась небольшой (около 1,3 мВ), в дистальном же канальце она высокая и может достигать 60 мВ. Концентрация натрия в крови выше, чем в цитоплазме клеток канальцев, поэтому реабсорбция натрия обусловлена активным транспортом — переносом его против градиента электрохимического потенциала. При реабсорбции натрий вначале входит в клетку эпителия канальца пассивно по натриевому каналу мембраны, обращенной в сторону просвета канальца. Внутренняя часть клетки заряжена отрицательно и поэтому положительно заряженный ион Na+ входит в клетку по градиенту потенциала. Далее натрий движется в сторону базальной плазматической мембраны, в которой имеется ионная помпа. Обязательным компонентом натриевой помпы является Na+, K+ -АТФ-аза. Этот фермент обеспечивает транспорт натрия из клетки в кровь и одновременное поступление в клетку калия. Ионообменный натриево-калиевый механизм угнетается сердечными гликозидами, например уабаином.
Фильтруемая глюкоза практически полностью реабсорбируется клетками проксимального отдела канальца. В нормальных условиях за сутки с мочой выделяются незначительные ее количества (не более 130 мг). Процесс обратного всасывания глюкозы осуществляется против высокого концентрационного градиента. В апикальной мембране клеток проксимального канальца глюкоза соединяется с переносчиком, который должен одновременно присоединить ион Na+. В результате в цитоплазму клетки поступают и глюкоза, и натрий. Так как мембрана отличается высокой селективностью и односторонней проницаемостью, она не пропускает глюкозу обратно из клетки в просвет канальца. Следующий этап — перенос глюкозы из клетки в кровь через базальную плазматическую мембрану — носит характер облегченной диффузии.
Аминокислоты почти полностью реабсорбируются клетками проксимального канальца. Имеется не менее 4 механизмов транспорта аминокислот из просвета канальца в кровь: специальные системы реабсорбции для нейтральных, двуосновных, дикарбоксильных аминокислот и иминокислот. Каждая из этих систем обеспечивает всасывание ряда аминокислот одной группы. Так, например, система реабсорбции двуосновных аминокислот участвует во всасываний лизина, аргинина, орнитина и, возможно, цистина. При введении в кровь избытка одной из указанных аминокислот начинается усиленная экскреция остальных аминокислот соответствующей группы. Системы транспорта отдельных групп аминокислот контролируются раздельными внутриклеточными генетическими механизмами. Описаны наследственные заболевания, одним из проявлений которых служит увеличенная экскреция определенных групп аминокислот (аминоацйдурия).
Выделение с мочойслабых кислот и оснований зависит от их фильтрации в клубочках, реабсорбции и секреции в проксимальных канальцах, а также от «неионной диффузии», влияние которой особенно сказывается в дистальных канальцах и собирательных трубках. Эти соединения могут существовать в зависимости от рН среды в двух формах — неионизированной и ионизированной. Клеточные мембраны более проницаемы для неионизированных веществ. Многие слабые кислоты с большой скоростью экскретируются с щелочной мочой, а слабые основания, напротив — с кислой. Если в канальцевой жидкости рН сдвинута в кислую сторону, основания ионизированы, они слабо реабсорбируются и преимущественно экскретируются с мочой. Никотин является слабым основанием, ионизированным на 50% при рН 8,-1; он в 2—4 раза быстрее экскретируется с кислой (рН около 5), чем с более щелочной мочой (рН 7,8). Неионная диффузия влияет на выделение аммония, барбитуратов и др. веществ.
412
Небольшое количество профильтровавшегося в клубочках белка реабсорбируется клетками проксимальных канальцев. Выделение белков с мочой в норме составляет не более 20—75 мг в сутки. При заболеваниях почек оно может возрастать до 50 г в сутки. Выделение значительных количеств белка (протеинурия) может быть обусловлено либо нарушением реабсорбции, либо увеличением фильтрации белка.
В отличие от электролитов, глюкозы и аминокислот, которые, проникнув через апикальную мембрану, в неизменном виде достигают базальной плазматической мембраны и транспортируются в кровь, перенос белка обеспечивается принципиально иным механизмом. Белок попадает в клетку с помощью пиноцитоза. Молекулы профильтровавшегося белка абсорбируются на поверхностной мембране клетки с образованием, в конечном счете, пиноцитозной вакуоли. Эти вакуоли движутся в сторону базальной части клетки; в околоядерной области, где локализован пластинчатый комплекс (аппарат Гольджи), они могут сливаться с лизосомами, обладающими высокой активностью ряда протеолитических ферментов. В лизосомах захваченные молекулы белка при участии ферментов расщепляются и низкомолекулярные их фрагменты переносятся в кровь через базальную плазматическую мембрану. Следует, однако, подчеркнуть, что не все белки в процессе транспорта подвергаются расщеплению, часть их попадает в кровь в неизменном виде.
Определение величины канальцевой реабсорбции
Обратное всасывание веществ, иными словами, их транспорт из просвета канальцев в интерстициальную ткань почки и в кровь (реабсорбция), определяется по разности между количеством вещества, профильтровавшегося в клубочках и выделенного с мочой.
Важное значение для функциональной оценки реабсорбционной способности клеток проксимальных канальцев имеет определение максимальной величины транспорта глюкозы (Tmg)- Ее измеряют при полном насыщении системы канальцевого транспорта глюкозы. Для этого в кровь вводят глюкозу, повышая ее концентрацию до тех пор, пока она не начнет в значительных количествах выделяться с мочой.
Величина Tmg характеризует полную загрузку системы транспорта глюкозы. У мужчин эта величина равна в среднем 375 мг/мин, а у женщин — 303 мг/мин. В условиях патологии эта величина снижается, что может указывать либо на уменьшение реабсорбционной способности клеток проксимальных канальцев, либо на снижение числа работающих нефронов. Для ответа на этот вопрос рассчитывают Tmg на 100 мл клубочкового фильтрата.
КАНАЛЬЦЕВАЯ СЕКРЕЦИЯ
В выделенииЧв организма продуктов обмена и чужеродных веществ большое значение имеет их секреция из крови в просвет канальца против концентрационного или электрохимического градиента. Секреция позволяет быстро экскретировать органические основания и ионы. Органические кислоты (феноловый красный, параамино-
.гиппуровая кислота, диодраст, пенициллин и др.) и основания секретируются в проксимальном отделе канальца, ионы (калий) — в конечных частях дистального отдела и собирательных трубках.
Рассмотрим механизм секреции органических кислот на примере выделения почкой парапминогиппуровой кислоты (ПАГ). При введении ПАГ в кровь человека ее выделение из организма с мочой зависит от фильтрации в клубочках и секреции в канальцах. Когда секреция ПАГ достигает максимального уровня, она становится постоянной и независимой от содержания ПАГ в плазме крови. Принципиальная схема секреторного процесса при транспорте органических соединений состоит в том, что в мембране клетки проксимального канальца, обращенной к интерстициальной жидкости, имеется переносчик (А), обладающий высоким сродством к ПАГ. В присутствии ПАГ образуется комплекс
413
А—ПАГ, который перемещается в мембране и на ее внутренней поверхности распадается, освобождая ПАГ и вновь приобретая способность перемещаться к внешней поверхности мембраны и соединяться с новой молекулой ПАГ. Этот процесс происходит с затратой энергии, которая непрестанно поставляется к местам активного транспорта. Угнетение дыхания цианидами, разобщение дыхания и окислительного фосфорилирования динитрофенолом снижает или даже прекращает секрецию. В физиологических условиях уровень секреции зависит от числа переносчиков в мембране. Секреций ПАГ возрастает пропорционально увеличению ее концентрации з крови до тех пор, пока все молекулы переносчика не насытятся ПАГ. Максимальная скорость транспорта ПАГ достигается в тот момент, когда количество ПАГ, доступное для транспорта, становится равным количеству молекул переносчика. Поступившая в клетку ПАГ движется в цитоплазме к апикальной мембране и через нее специальным механизмом выделяется в просвет канальца.
Недавно было установлено, что процесс секреции органических кислот в почке имеет адаптивный характер. Если в течение нескольких дней часто вводить ПАГ (пенициллин или иное секретируемое вещество), то интенсивность секреции значительно возрастает. Это обусловлено тем, что в клетках проксимальных канальцев при участии систем белкового синтеза вырабатываются вещества, являющиеся необходимыми компонентами процесса переноса через мембрану органических веществ.
Секреция органических оснований (например, холина), подобно органическим кислотам происходит в проксимальном отделе нефрона. Системы секреции органических кислот и оснований функционируют независимо друг от друга, и при угнетении секреции органических кислот секреция оснований не нарушается.
Транспорт калия в нефроне отличается от транспорта натрия тем, что ион К+ подвергается не только реабсорбции, но и секреции клетками конечных отделов нефрона и собирательных трубок. Процесс секреции иона К+ включает ряд этапов. Калий поступает в клетку канальца из межклеточной жидкости при участии фермента Na+, K+-АТФ- азы, которая транспортирует ион К+ в обмен на ион Na+ (калий поступает в цитоплазму, а натрий одновременно выходит из клетки). Таким образом, поддерживается высокая внутриклеточная концентрация калия.
Секреция калия клетками в просвет канальца зависит от ряда факторов, и прежде всего от степени возрастания проницаемости для калия апикальной мембраны клетки, обращенной в просвет канальца. В ней открываются «каналы», по которым калий по градиенту концентрации может выходить из клетки. Скорость секреции калия зависит также от градиента электрохимического потенциала на апикальной мембране клетки: чем больше се электроотрицательность, тем выше уровень секреции калия. Поэтому введение слабореабсорбируемых анионов, например сульфатов, увеличивает секрецию калия. Таким образом, секреция калия зависит от его внутриклеточной концентрации, проницаемости для калия апикальной мембраны и градиента электрохимического потенциала этой мембраны. Необходимо учитывать, что эти же клетки нефрона при дефиците калия в организме прекращают секрецию калия и начинают только реабсорбировать его из канальцевой жидкости. В этом случае ион К+ из просвета канальца транспортируется через апикальную плазматическую мембрану внутрь клетки, передвигается по цитоплазме к базальной мембране и диффундирует через нее в межклеточную жидкость и кровь. Сказанное свидетельствует о высокой пластичности клеток этих отделов канальцев, способных при действии факторов регуляции перестраивать свою деятельность, изменяя направление транспорта, осуществлять то секрецию, то реабсорбцию калия.
ОПРЕДЕЛЕНИЕ ВЕЛИЧИНЫ ПОЧЕЧНОГО КРОВОТОКА И ПЛАЗМОТОКА
Непрямые методы измерения величины почечного кровотока основаны на оценке способности клеток почечных канальцев к секреции — практически полному извлечению из околоканальцевой жидкости (и соответственно из плазмы крови) ряда органических
414
кислот и их выделению в просвет канальца. С этой целью используют такие соединения, как-ПАГ и диодраст, которые секретируются клетками почечных канальцев столь эффек тивно, что при невысокой их концентрации в артериальной крови она полностью очища ется от этих веществ при однократном прохождении через почку. Этот прием позволяет измерить и величину эффективного почечного плазмотока, т. е. то количество плазмы, которое протекает по сосудам коры почки и омывает клетки проксимального сегмента нефрона.
Общий кровоток и плазмоток через почки может быть рассчитан, если известно, какое количество ПАГ не удаляется клетками канальцев. ПАГ полностью извлекается из крови, протекающей в коре почки. Наличие же в почечной вене небольшого количества ПАГ обусловлено той незначительной (по сравнению с общим кровотоком) частью крови, которая минует кору почки и поступает в сосуды мозгового вещества.
СИНТЕЗ ВЕЩЕСТВ В ПОЧКАХ
В почке образуются некоторые вещества, выделяемые с мочой (гиппуровая кислота, аммиак и др.), а также всасывающиеся в кровь (ренин, простагландины, глюкоза, образующаяся в почке, и др.). Гиппуровая кислота синтезируется в клетках канальцев из бензойной кислоты и гликокола. В опытах на изолированной почке было показано, что при введении в почечную артерию раствора бензойной кислоты и гликокола в моче появляется гиппуровая кислота. В клетках канальцев при дезаминировании аминокислот, главным образом глутамина, из аминогрупп образуется аммиак. Он поступает преимущественно в мочу, но частично проникает через базальную плазматическую мембрану в кровь, и в почечной вене аммиака больше, чем в почечной артерии.
ОСМОТИЧЕСКОЕ РАЗВЕДЕНИЕ И КОНЦЕНТРИРОВАНИЕ МОЧИ
Способностью к образованию мочи с большей осмотической концентрацией, чем кровь, обладают лишь почки теплокровных животных. Многие исследователи пытались разгадать физиологический механизм этого процесса, но лишь в начале 50-х годов XX века была обоснована гипотеза, согласно которой образование осмотически концентрированной мочи связано с механизмом противоточно-поворотной множительной системы некоторых участков нефрона.
Принцип противоточного обмена достаточно широко распространен в природе и используется в технике. Механизм работы такой системы рассмотрим на примере кровеносных сосудов в конечностях арктических животных. Во избежание больших потерь тепла кровь в параллельно расположенных артериях и венах конечностей течет таким образом, что теплая артериальная кровь согревает охлажденную венозную кровь, движущуюся к сердцу (рис. 204). В стопу притекает артериальная кровь с низкой температурой, что резко уменьшает теплоотдачу. Здесь такая система функционирует только как противоточный обменник: в почке же она обладает множительным эффектом. Для лучшего понимания ее работы рассмотрим систему, состоящую из трех параллельно расположенных трубок. Трубки I и II дугообразно соединены на одном из концов (рис. 204, Б). Стенка, общая для обеих трубок, обладает способностью переносить соли, но она не пропускает воду. Когда в такую систему через вход 1 наливают жидкость с концентрацией 300 мосмоль/л и она не течет, то через некоторое время в результате транспорта солей в трубке I жидкость станет гипотонической, а в трубке II — гипертонической. В том случае, когда жидкость течет по трубкам непрерывно, начинается концентрирование солей. На каждом горизонтальном уровне перепад их концентраций вследствие одиночного эффекта транспорта солей не может превышать 200 мосмоль/л, однако по длине трубки происходит умножение одиночных эффектов и система начинает работать как противоточная множительная система. Так как по ходу движения жидкости из нее извлекаются не только соль, но и некоторое количество воды, концентрация раствора все более повышается по мере приближения к изгибу петли. В трубке III регу-
415

Рис. 204. Схема функционирования противоточно-поворотной системы.
А — теплообменник в сосудистой системе конечностей арктических животных; обмен тепла между артериальной и венозной кровью способствует сбережению тепла и на каждом уровне не превышает I°— 2° С. Б
— модель противоточной множительной системы н начальном состоянии ( а ) и в период эффективного концентрирования мочи ( б ) . Объяснение в тексте.
Рис. 205. Повышение концентрации (показано штриховкой увеличенной частоты) осмотически активных веществ в различных участках почки.
а — состояние антидиуреза; б — состояние водного диуреза. Широкими стрелками обозначено направление транспорта основных веществ, участвующих в осмотическом концентрировании; тонкими стрелками — движение первичной и вторичной мочи.
лируется проницаемость стенок для воды; когда стенка начинает пропускать воду, объем жидкости в ней уменьшается. При этом вода идет в сторону большей осмотической концентрации. В результате этого растет концентрация жидкости в трубке III и уменьшается объем содержащейся в ней жидкости. Концентрация в ней веществ будет зависеть от ряда условий, в том числе от работы противоточной множительной системы трубок I и II. Как будет ясно из последующего изложения, работа почечных канальцев
впроцессе осмотического концентрирования мочи похожа на описанную модель.
Взависимости от состояния водного баланса организма почки выделяют разведенную или концентрированную мочу. В процессе осмотического концентрирования мочи в
почке принимают участие все отделы канальцев, сосуды мозгового вещества, интерстициальная ткань. Из 100 мл фильтрата, образовавшегося в клубочках, 2/з его реабсорбируются к концу проксимального сегмента. Оставшаяся в канальцах жидкость содержит осмотически активные вещества в такой же концентрации, как и ультрафильтрат плазмы крови, хотя и отличается от него по составу вследствие реабсорбции ряда веществ в предшествующих частях нефрона. Далее канальцевая жидкость переходит из коркового слоя почки в мозговое вещество — в нисходящий (тонкий) отдел петли нефрона (петля Генле) и движется до вершины почечного сосочка, где каналец изгибается на 180°, и моча переходит в восходящий отдел петли, расположенный параллельно
еенисходящему отделу.
Функциональное значение различных отделов петли неоднозначно. Когда жидкость из проксимального отдела канальца поступает в тонкий нисходящий отдел петли нефрона, она попадает в зону почки, в интерстициальной ткани которой концентрация осмотически активных веществ выше, чем в коре почки. Это повышение осмолярной концентрации в наружной зоне мозгового вещества обусловлено деятельностью толстого восходящего отдела петли нефрона. Его стенка непроницаема для воды, а клетки транспортируют ионы С1- и Na+ в интерстициальную ткань. Стенка нисходящего отдела петли проницаема для воды, и поэтому вода всасывается из просвета канальца в окружающую межуточную ткань почки по осмотическому градиенту, а осмотически активные вещества остаются в просвете этого отдела канальца.
Чем дальше от коры по продольной оси находится жидкость в нисходящем колене петли, тем выше ее осмолярная концентрация. В каждых соседних участках нисходящего отдела петли имеется лишь небольшое нарастание осмотического давления, но по длине петли осмолярная концентрация постепенно растет от 300 мосмоль/л почти до 1450 мосмоль/л. Иначе говоря, на вершине петли нефрона осмолярная концентрация жидкости возрастает в несколько раз и при этом объем ее уменьшается. При дальнейшем передвижении жидкости по восходящему отделу петли нефрона происходит реабсорбция ионов С1- и Na+, вода остается в просвете канальца, поэтому в начальные части дистального извитого канальца всегда поступает гипотоническая жидкость, концентрация осмотически активных веществ в которой менее 200 мосмоль/л.
Из гипотонической жидкости по осмотическому градиенту реабсорбируется вода, осмолярная концентрация жидкости в этом отделе увеличивается, т. е. жидкость в просвете канальца становится изоосмотической. Окончательное концентрирование мочи происходит в собирательных трубках; они расположены параллельно канальцам петли нефрона, в мозговом веществе почки. Как отмечалось выше, в интерстициальной жидкости мозгового вещества почки возрастает осмолярная концентрация. Вследствие этого из жидкости собирательных трубок реабсорбируется вода и концентрация мочи в них увеличивается, уравновешиваясь со все повышающейся осмолярной концентрацией внутреннего мозгового вещества почки. В конечном счете выделяется гиперосмотическая моча, в которой максимальная концентрация осмотически активных веществ может быть равна осмолярной концентрации интерстициальной жидкости на вершине почечного сосочка (рис. 205).
В условиях дефицита воды в организме усиливается секреция антидиуретического гормона гипофиза (АДГ), что увеличивает проницаемость стенок конечных частей
дистального сегмента и собирательных трубок для воды. |
|
14 -Физиологиячеловека |
417 |
В отличие от наружной зоны мозгового вещества почки, где повышение осмолярности основано главным образом на транспорте хлоридов, увеличение осмолярной концентрации во внутренней зоне мозгового вещества почки зависит от нескольких механизмов. Особую роль в осмотическом концентрировании играет накопление мочевины. Стенки проксимального канальца проницаемы для мочевины. В этом отделе нефрона реабсорбируется до 50% профильтровавшейся мочевины. Однако при извлечении жидкости из извитого дистального канальца оказалось, что содержание мочевины даже несколько превышает ее количество, поступившее с фильтратом, и составляет около 110%. Было показано, что имеется система внутрипочечного кругооборота мочевины, которая участвует в осмотическом концентрировании мочи. В просвете собирательных трубок вследствие реабсорбции воды повышается концентрация мочевины, АДГ увеличивает проницаемость собирательных трубок в мозговом веществе не только для воды, но и для мочевины. Когда увеличивается проницаемость канальцевой стенки для мочевины, она диффундирует в мозговое вещество почки. Постоянное поступление во внутреннее мозговое вещество мочевины, ионов С1- и Na + , реабсорбируемых клетками тонкого восходящего отдела петли нефрона и собирательных трубок, обеспечивает повышение осмотической концентрации в мозговом веществе почки. Вслед за увеличением осмолярности окружающей собирательные трубки межуточной ткани возрастает и реабсорбция воды из них и повышается эффективность осморегулирующей функции почки. Изменение проницаемости канальцевой стенки для мочевины позволяет понять, почему очищение от мочевины уменьшается при снижении мочеотделения.
Прямые кровеносные сосуды мозгового вещества почки, подобно канальцам петли нефрона, также образуют противоточную систему, играющую очень важную роль в осмотическом концентрировании. Благодаря особенностям расположения прямых сосудов обеспечивается эффективное кровоснабжение мозгового вещества почки, но не происходит вымывания осмотически активных веществ, поскольку в крови прямых сосудов наблюдаются такие же изменения осмотической концентрации, как и в тонком нисходящем отделе петли нефрона. При движении крови в ней постепенно возрастает осмотическая концентрация, а во время ее обратного движения к коре почки соли и другие растворенные вещества, диффундирующие через сосудистую стенку, переходят в интерстициальную ткань. Тем самым сохраняется градиент концентрации осмотически активных веществ, т. е. прямые сосуды функционируют как проти.воточная система. Скорость движения крови по прямым сосудам влияет на количество удаляемых из мозгового вещества ионов Na+, Cl- и мочевины, участвующих в создании осмотического градиента, и отток реабсорбируемой воды.
При водной нагрузке относительная проксимальная реабсорбция ионов и воды не изменяется, и в дистальный отдел нефрона поступает такое же количество жидкости, как
ибез нагрузки. При этом стенка дистальных отделов почечных канальцев остается водонепроницаемой, а из протекающей мочи клетки продолжают реабсорбировать соли натрия; при этом выделяется гипотоническая моча, концентрация осмотически активных веществ в которой ниже 50 мосмоль/л. Проницаемость канальцев для мочевины низкая,
иона экскретируется с мочой, не накапливаясь в мозговом веществе почки. Собирательные трубки также обеспечивают реабсорбцию натрия, хлора и других ионов. Их основная функциональная особенность состоит в том, что реабсорбция веществ происходит в небольших количествах, но против наиболее значительного градиента, что обусловли-
вает существенные различия концентрации ряда неорганических веществ в моче по сравнению с кровью.
■ Таким образом, деятельность петли нефрона, конечных частей дистального отдела собирательных трубок обусловливает способность почек человека при водной нарузке выделять большие объемы (до 900 мл/ч) разведенной, гипотонической мочи, а при дефиците воды в организме экскретировать мочи всего 10—12 мл/ч, в 4'/г раза осмотически более концентрированной, чем кровь. Способность почки осмотически концентрировать мочу исключительно развита у некоторых пустынных грызунов, что позволяет им длительное время не пить воду.
ГОМЕОСТАТИЧЕСКАЯ ФУНКЦИЯ ПОЧЕК
Для поддержания почками постоянства объема и состава внутренней среды и прежде всего крови существуют специальные системы рефлекторной регуляции, включающие специфические рецепторы, афферентные пути и нервные центры, где происходит
418

переработка информации. Команды к почке поступают по эфферентным нервам или гуморальным путем. В целом перестройка работы почки, ее приспособление к непрестанно изменяющимся условиям определяется преимущественно влиянием на гломерулярный и канальцевый аппарат различных гормонов: АДГ, альдостерона, паратгормона и многих других (рис. 206)
Роль почек в осморегулиции и волюморегуляции. Почки являются основным органом
осморегуляции. Они обеспечивают выделение избытка воды из организма в виде гипотонической мочи при увеличенном содержании воды (гипергидратация) или экономят воду и экскретируют мочу, гипертоническую по отношению к плазме крови при обезвоживании организма (дегидратация). При избыточном содержании воды в организме концентрация растворенных осмотически активных веществ в крови снижается и ее осмотическое давление падает. Это уменьшает активность центральных осморецепторов, расположенных в области супраоптического ядра гипоталамуса, а также периферических осморецепторов, имеющихся в печени, почке, селезенке и ряде других органов, что снижает выделение АДГ из нейрогипофиза в кровь и приводит к усилению выделения воды почкой.
При обезвоживании организма (или введении в сосудистое русло гипертонического раствора хлорида натрия) увеличивается концентрация осмотически активных веществ в плазме крови, возбуждаются осморецепторы, усиливается секреция АДГ, возрастает факультативная реабсорбция воды, уменьшается мочеотделение и выделяется осмотически концентрированная моча. В эксперименте'на животных было показано, что секреция АДГ возрастает при раздражении не только осморецепторов, но и специфических натриорецепторов. Поэтому после введения в область I II желудочка мозга гипертонического раствора хлорида натрия наступает антидиурез, а после введения в ту же область гипертонических растворов сахара угнетения мочеотделения не наблюдается.
Осморецепторы чутко реагируют на сдвиги концентрации осмотически активных веществ в плазме крови. При увеличении осмолярности плазмы крови на 1% концентрация АДГ возрастает на 1 пг/мл (пикограмм равен 1 миллионной доле микрограмма). Переход же к состоянию максимального осмотического концентрирования мочи требует всего лишь 10-кратного возрастания количества АДГ в крови.
Помимо информации от осморецепторов и натриорецепторов, уровень секреции АДГ зависит от активности волюморецепторов, реагирующих на изменение объема
14* |
419 |

внутрисосудистой и внеклеточной жидкости. Ведущее значение в регуляции секреции АДГ имеют те волюморецепторы, которые реагируют на изменение напряжения сосудистой стенки в области низкого давления. В первую очередь следует назвать рецепторы левого предсердия, импульсы от которых передаются в ЦНС по афферентным волокнам блуждающего нерва. Изолированная активация волюморецепторов, возникающая в ответ на увеличение объема внутрисосудистой жидкости, приводит к повышению экскреции солей натрия и воды. Одновременная активация волюм- и осморецепторов в основном усиливает выведение воды, уменьшая ее реабсорбцию.
Роль почек в регуляции ионного состава крови. Почки являются важнейшим эффек-
торным органом в системе ионного гомеостаза. Новейшие данные свидетельствуют о существовании в организме систем регуляции баланса каждого из ионов. Для некоторых из ионов уже описаны специфические рецепторы, например натриорецепторы. Появились первые данные о рефлекторной регуляции баланса других ионов.
Известны гормоны, регулирующие реабсорбцию и секрецию ионов в почечных канальцах. Реабсорбция натрия возрастает в конечных частях дистального отдела нефрона и собирательных трубках под влиянием гормона коры надпочечника альдостерона. Этот гормон выделяется в кровь при снижении концентрации натрия в плазме и уменьшении объема циркулирующей крови. Усиленное выделение натрия почкой вследствие угнетения его реабсорбции достигается при секреции в кровь так называемого натрийуретического гормона; его выработка возрастает при увеличении объема циркулирующей крови и повышении объема внеклеточной жидкости в организме. Хотя мысль о существовании этого гормона была высказана в конце 50-х годов, его структура и место секреции до сих пор не установлены.
Альдостерон усиливает выделение калия с мочой. Уменьшает выделение калия инсулин. Экскреция калия тесно связана с кислотно-щелочным состоянием. Алкалоз сопровождается усилением выделения калия с мочой, а ацидоз — его уменьшением.
При снижении концентрации кальция в крови паращитовидные железы выделяют паратгормон, который способствует нормализации уровня кальция в крови за счет увеличения его реабсорбции в почечных канальцах и повышения резсорбции кальция из костей. При гиперкальциемии под влиянием гастрина или подобного ему вещества, вырабатываемого в желудочно-кишечном тракте, стимулируется выделение в кровь клетками щитовидной железы гормона тирокальцитонина, который снижает концентра-
цию кальция в крови, способствует увеличению его экскреции почкой и переходу ионов Са++ в кости.
В почечных канальцах регулируется также уровень реабсорбции магния, хлора, сульфатов и других ионов.
Роль почек в регуляции кислотно-основного состояния. Почки играют важную роль в поддержании постоянства концентрации ионов водорода в крови. Активная реакция мочи у человека и животных может очень резко изменяться, концентрации ионов водорода в моче при крайних состояниях работы почек различаются почти в 1000 раз (рН в некоторых случаях снижается до 4,5 или возрастает до 8,0, что и обеспечивает участие почек в стабилизации рН плазмы крови на уровне 7,36). Механизм закисления мочи основан на секреции клетками в просвет канальцев ионов водорода (рис. 207).
В апикальной плазматической мембране и цитоплазме клеток различных отделов нефрона находится фермент карбоангидраза, катализирующий реакцию гидратации двуокиси углерода.
Фильтрующийся из плазмы крови в просвет канальцев NаНСОз взаимодействует с ионами водорода, секретированными клеткой, приводя к образованию СО2. В просвете канальца ионы Н+ связываются не только с НСО3-, но и с такими соединениями, как двузамещенный фосфат (Na2HPO4) и некоторыми другими, в результате чего увеличивается экскреция титруемых кислот с мочой. Это способствует восстановлению резерва
420