
- •Денатурация и ренатурация белков
- •Переваривание белков в пищеварительном тракте
- •Образование и роль соляной кислоты
- •2.Механизм активации пепсина
- •. Образование и роль соляной кислоты
- •Гниение белков в толстом кишечнике. Обезвреживание продуктов гниения в печени.
- •Мочевина. Значение ее образования в организме. Содержание мочевины в крови и суточное выделение с мочой. Причины изменения суточного количества мочевины в моче.
- •Орнитиновый цикл в печени выполняет две функции:
- •3. Полисахариды. Это высокомолекулярные вещества, состоящие из большого количества (сотен и тысяч) остатков моносахаридов. По своему химическому строению полисахариды могут быть разделены на:
- •3. Полисахариды. Это высокомолекулярные вещества, состоящие из большого количества (сотен и тысяч) остатков моносахаридов. По своему химическому строению полисахариды могут быть разделены на:
- •3. Полисахариды. Это высокомолекулярные вещества, состоящие из большого количества (сотен и тысяч) остатков моносахаридов. По своему химическому строению полисахариды могут быть разделены на:
- •Гомо–и гетерополисахаридов
Гомо–и гетерополисахаридов
Полисахариды – это природные высокомолекулярные вещества, состоящие из большого количества остатков моносахаридов (рис.2.1). Полисахариды, в составе которых присутствуют остатки только одного моносахарида, называют гомополисахаридами. Если остатки моносахаридов разные, такие полисахариды называют гетерополисахаридами.
Полисахариды в различных организмах выполняют несколько важных биологических функций:
1) структурная у растений (целлюлоза);
2) защитная у членистоногих (хитин);
3) запасающая (крахмал – у растений; гликоген – у животных и грибов).
Рис. 2.1. Структура гомо- и гетерополисахаридов
Поскольку наиболее распространенными представителями полисахаридов являются крахмал, гликоген и целлюлоза, рассмотрим строение этих веществ подробнее.
Крахмал, широко распространенный резервный полисахарид растений, является наиболее важным углеводным компонентом пищевого рациона. Он содержится в хлоропластах листьев, плодах, семенах и клубнях. Оcoбeнно высоко содержание крахмала в зерновых культурах (до 75% от сухой массы), клубнях картофеля (примерно 65%) и других запасающих частях растений. Крахмал откладывается в форме микроскопических гранул в специальных органеллах – амилопластах. При продолжительном кипячении примерно 15-25% крахмала переходит в раствор в виде коллоида. Этот «растворимый крахмал» носит название «амилоза». Ocтальная часть, амилопектин, нe растворяется даже при очень длительном кипячении. И крахмал, и амилоза построены из остатков α-D-глюкозы, связанных α-(1,4`)-глюкозидными связями. Цепочки молекул крахмала имеют большую молекулярную массу. Молекулярная масса амилозы достигает 160000, а молекулярная масса амилопектина может составлять более 1000000.
Молекулы амилозы имеют вид нитей, а молекулы амилопектина имеют боковые ответвления, расположенные через 24 – 30 глюкозных остатков. Эти ответвления образуются по типу (1 – 6) глюкозидных связей:
Пространственные взаимоотношения между амилозой и амилопектином в растительных гранулах крахмала можно представить следующим образом, см. рис. 2.2.
Рис. 2.2. Пространственные взаимоотношения между амилозой и амилопектином в растительных гранулах крахмала
Гликоген – запасающий полисахарид животных и человека. Цепочки гликогена, как и крахмала, построены из остатков α-D-глюкозы, связанных α-(1,4)-глюкозидными связями. Но ветвление гликогена более частое, в среднем приходится на каждые 8 – 12 остатков глюкозы. Вследствие этого гликоген представляет собой более компактную массу, чем крахмал. Особенно много гликогена содержится в печени, где его количество может достигать 7% от массы всего органа. В гепатоцитах гликоген находится в гранулах большого размера, которые представляют собой кластеры, состоящие из более мелких гранул, являющихся единичными молекулами гликогена и имеющих среднюю молекулярную массу несколько миллионов. Эти гранулы содержат также ферменты, способные катализировать реакции синтеза и реакции распада гликогена.
Поскольку каждое ответвление гликогена оканчивается невосстанавливающим остатком глюкозы, молекула гликогена имеет столько же невосстанавливающих концов, сколько ответвлений, и только один восстанавливающий конец. Ферменты деградации гликогена воздействуют только на невосстанавливающие концы и могут одновременно функционировать на многих ветвях молекулы. Это значительно увеличивает суммарную скорость распада молекулы гликогена на моносахариды.
Для чего необходимо сохранять глюкозу в форме полисахарида? Рассчитано, что гепатоциты содержат столько гликогена, что если бы содержащаяся в нем глюкоза находилась в свободной форме, ее концентрация в клетке составила бы 0,4 М. Это бы обусловило очень высокое осмотическое давление среды, при котором клетка не смогла бы существовать. Концентрация глюкозы в крови обычно составляет 5 мМ. Таким образом, между кровью и цитоплазмой гепатоцита возник бы очень большой градиент концентрации глюкозы, вода из крови стала бы входить внутрь клетки, что привело бы к ее раздутию и разрыву плазматической мембраны. Таким образом, синтез гликогена позволяет не допустить чрезмерного изменения осмотических свойств клетки при хранении значительных количеств глюкозы.
Цeллюлoзa состоит из остатков глюкозы, связанных, в отличие от крахмала и гликогена, в положении β(1→4). Она является самым распространенным органическим соединением в живой природе. Молекулярная масса целлюлозы может составлять 1000000 и более. Природная целлюлоза обладает высокой механической прочностью, устойчива к химическому и ферментативному гидролизу. Эти свойства связаны с конформацией молекул и особенностями надмолекулярной организации. Неразветвленные связи типа β(1→4) приводят к oбpaзoвaнию линейных цепей, которые стабилизированы внутри- и межцепочечными водородными мостиками, образованными гидроксильными группами, см. рис.2.3.
Рис. 2.3. Образование водородных связей в молекуле целлюлозы
22.с.288-290
23.с.290-292
24. с.290-292
ГЛЮТы – транспортеры глюкозы через мембраны
отребление глюкозы клетками из кровотока происходит путем облегченной диффузии при участии специальных белков-транспортеров (ГЛЮТов). Следовательно, скорость трансмембранного потока глюкозы зависит только от градиента ее концентрации. Исключением являются клетки мышц и жировой ткани, где облегченная диффузия регулируется инсулином. В отсутствии инсулина плазматическая мембрана этих клеток непроницаема для глюкозы, так как в ней нет белков переносчиков для глюкозы (ГЛЮТов).
ГЛЮТы обнаружены во всех тканях. Существует несколько разновидностей ГЛЮТов, которые пронумерованы по порядку их обнаружения.
Все 5 типов ГЛЮТов имеют сходную первичную структуру.
ГЛЮТ-1 служит для обеспечения стабильного потока глюкозы в мозг. В других тканях (в плаценте, почках, толстой кишке) он поставляет глюкозу в клетки, когда они находятся в состоянии покоя.
ГЛЮТ-2 обнаружен в клетках органов, выделяющих глюкозу в кровь (печень, b-клетки островков Лангерганса). При участии ГЛЮТ-2 глюкоза переходит в кровь из энтероцита после ее всасывания в кишечник.
ГЛЮТ-3 обладает большим, чем ГЛЮТ-1, сродством к глюкозе. Он также обеспечивает постоянный приток глюкозы к клеткам нервной системы, плаценте, почкам.
ГЛЮТ-4 – главный переносчик глюкозы в мышцах и адипоцитах.
ГЛЮТ-5 встречается г.о. в клетках тонкой кишки. Его функции известны недостаточности.
Все типы ГЛЮТов могут находится как в плазматической мембране, так и в цитозольных везикулах. В отсутствие инсулина ГЛЮТ-4 (и в меньшей степени ГЛЮТ-1) почти полностью находится в цитоплазме. Влияние инсулина на такие клетки приводит к перемещению везикул, содержащих ГЛЮТы к плазматической мембране и их слиянию с ней, после чего возможен облегченный транспорт глюкозы в эти клетки. После снижения концентрации инсулина в крови белки-транспортеры глюкозы снова перемещаются в цитозоль.
В клетки печени глюкоза переходит при участии ГЛЮТ-2, независимого от инсулина.
25.с.292-296