Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Shpora_po_biokhimii

.pdf
Скачиваний:
29
Добавлен:
27.01.2020
Размер:
784.67 Кб
Скачать

93.Ренин-альдостерон-ангиотензиновая система.

Почечная гипертония. Нар-е водно-солевого обмена.

Система ренин-ангиотензин-альдостерон играет важную роль в

восстановлении

объема крови и

артериального

давления при

кровотечении,

сильной

рвоте,

поносе

и

обильном

потоотделении.Ключевую роль в этой системе играет фермент ренин, который синтезируется юкстагломерулярными клетками, окружающими приносящую артериолу почечного клубочка. Эти клетки выполняют функцию рецепторов, реагирующих на растяжение стенки артериолы. Уменьшение объема крови приводит к снижению давления (растяжения) на юкстагломерулярные клетки и секреции ренина в кровь. Ренин – протеолитический фермент, его субстратом является белок крови ангиотензиноген, который синтезируется и секретируется печенью в кровь. Ренин отщепляет с N-конца ангиотензиногена пептид ангиотензин I из 10 аминокислот. Ангиотензин-превращающий фермент (АПФ), локализованный на мембране эндотелиальных клеток сосудов легких, катализирует

образование

ангиотензина II из ангиотензина I. Под действием АПФ

(карбоксидипептидилпептидазы) с С-конца ангиотензина I

отщепляется

дипептид.Ангиотензин

II

взаимодействует

с

мембранными рецепторами гипоталамуса, гладкомышечных клеток сосудов, клетками канальцев нефрона и клубочковой зоны коры надпочечников и передает сигнал через инозитолфосфатную систему. Действуя на гипоталамус, ангиотензин II вызывает жажду. В коре надпочечников пептид повышает синтез и секрецию альдостерона, в почках стимулирует увеличение реабсорбции Na+, задержку Н2О. Передавая сигнал на гладкомышечные клетки, вызывает сужение сосудов. Нормализация артериального давления повышает растяжение стенки артериолы почечного клубочка, что является сигналом к прекращению секреции ренина в кровь. Задержка натрия в результате нарушения экскреции его почками ведет к увеличению объема внеклеточной жидкости (ОВКЖ) и повышению артериального давления. Почки выделяют в кровь вещества,

обладающие

прессорным-повышающим

и

депрессорным(простогландины)-понижающим

артериальное

давление действием. И если функция почек нарушается, нарушается и их роль как регулятора артериального давления. Все нарушения водно-солевого обмена (дисгидрии) можно объединить в две формы: гипергидратация, характеризующаяся избыточным содержанием жидкости в организме, и гипогидратация (или обезвоживание), заключающаяся в уменьшении общего объема жидкости. Гипогидратация. Данная форма нарушения возникает вследствие либо значительного снижения поступления воды в организм, либо черезмерной ее потери. Крайняя степень обезвоживания называется эксикозом. Гипергидратация. Эта форма нарушения возникает вследствие либо избыточного поступления воды в организм, либо недостаточного ее выведения. В ряде случаев эти два фактора действуют одновременно. Почечная недостаточность также ведет к увеличению количества жидкости в результате нарушения ее выведения почками.

94.Парат-гормон и кальцитонин.

Гипогиперкальциемия.

Обмен кальция и фосфатов регулируют паратгормон (ПТГ) и кальцитонин. Основная задача этих гормонов - поддержание концентрации кальция в крови в норме. Паратгормон синтезируется в паращитовидных железах в виде пре-про-гормона. В ходе посттрансляционной модификации – отщепления части пептидной цепи он превращается в гормон, пептидная цепь которого включает 84 аминокислоты. Сигналом к секреции ПТГ в кровь являются снижение концентрации Са2+ и повышение уровня НРО42- в крови. Гормон имеет мембранные рецепторы, входящие в состав аденилатциклазной системы. Основные органы-мишени – кости и почки. В клетках-мишенях гормон повышает уровень цАМФ, который стимулирует выход кальция из органелл клетки. Ионы кальция активируют Са2+–зависимую протеинкиназу, которая фосфорилирует регуляторные белки цитозоля клеток. Перенося сигнал в ядро, они индуцируют транскрипцию определенных генов. В результате образуются белки, обеспечивающие повышение концентрации Са2+ в крови. Кальцитонин образуется в С-клетках паращитовидных желез, К-клетках щитовидной железы и представляет собой пептид из 32 аминокислот. Сигналом к секреции является повышение концентрации Са2+ в крови. Рецепторы гормона являются интегральными белками цитоплазматических мембран клеток-мишеней. Кальцитонин передает сигнал посредством аденилатциклазной системы, гормон снижает активность остеокластов и подавляет реабсорбцию Са2+ из почечных канальцев. Причиной гипокальциемии является снижение секреции ПТГ или нарушение передачи сигнала гормона. Гипопаратиреоз может быть вызван врожденным недоразвитием, удалением и аутоиммунной деструкцией паращитовидных желез.Гипокальциемии могут наблюдаться и при нормальной концентрации ПТГ в крови, так как в этом случае причиной являются нарушение структуры рецептора или их аутоиммунная деструкция. При недостатке ПТГ или нарушении трансдукции его сигнала в крови изменяются соотношения кальций/фосфат и натрий/калий. Это вызывает нарушение проницаемости клеточных мембран нервных клеток и процессов поляризации в области синапсов. В результате повышения нервномышечной возбудимости возрастает судорожная активность. Гиперпаратиореозы – могут быть вызваны гормон-продуцирующей опухолью паращитовидных желез или нарушением выработки кальцитриола. При гиперфункциональной аденоме избыток секреции гормона приводит к активации синтеза кальцитриола, вымыванию кальция и фосфатов из костной ткани, повышенной реабсорбции кальция в почках и абсорбции в кишечнике. На ранних стадиях заболевания у больных наблюдаются расшатывание и выпадение зубов, что объясняется остеопорозом костной ткани и деструкцией альвеолы. . При недостаточности кальцитриола или нарушении передачи его сигнала клеткам-мишеням у детей развивается рахит. У больных наблюдаются нарушении минерализации растущей костной ткани, замедленное прорезывание зубов.

95.Кальцитриол .Витамин D3-предшественник

кальцитриола.

Кальцитриол является стероидным гормоном, он образуется из витамина D3 (холекальциферола), который поступает с пищей и может синтезироваться в коже из холестерола под действием УФО. Реакции превращения D3 в гормон протекают в печени и почках. ПТГ индуцирует синтез ключевого фермента процесса - 1α-гидроксилазу почек и ускоряет синтез и секрецию гормона в кровь. Поэтому можно сказать, что сигналом на секрецию гормона в кровь является снижение концентрации кальция в крови. Как и все стероидные гормоны, кальцитриол проходит через мембраны клеток-мишеней и взаимодействует с внутриклеточными рецепторами. Образованный комплекс присоединяется к регуляторным зонам ДНК и активирует транскрипцию структурных генов. В энтероцитах, остеобластах, эпителиальных клетках канальцев нефрона повышается количество индуцированных гормоном белков. Синтез кальцитриола происходит в три этапа. Первый этап протекает в коже, где под влиянием ультрафиолетовых лучей из провитамина образуется витамин D3 или холекальциферол. Второй — связан с печенью, куда холекальциферол транспортируется кровью и где в эндоплазматическом ретикулуме гепатоцитов происходит его гидроксилирование по 25-му атому углерода с образованием 25(ОН)D3. Этот метаболит поступает в кровь и циркулирует в связи с альфа-глобулином. Его физиологические концентрации не влияют на обмен кальция. Третий этап осуществляется в почках, где в митохондриях клеток проксимальных канальцев происходит второе гидроксилирование и образуются два соединения. Первое — является наиболее активной формой витамина D3, обладает мощным регуляторным влиянием на обмен кальция в организме и называется кальцитриолом.Второе соединение-обладает способностью угнетать секрецию паратирина по принципу обратной связи. Инактивация кальцитриола происходит в печени. Основной эффект кальцитриола заключается в активации всасывания кальция в кишечнике. Гормон стимулирует все три этапа всасывания: захват ворсинчатой поверхностью клетки, внутриклеточный транспорт, выброс кальция через базолатеральную мембрану во внеклеточную среду. Холекальциферол(витамин D3) -жирорастворимый витамин. Образуется в коже под действием УФ-лучей из 7- дегидрохолестерина. Усиливает всасывание кальция и фосфатов в кишечнике, участвует в транспорте минеральных солей и в процессе кальцификации костей, регулирует также выведение кальция и фосфатов почками. Повышает проницаемость клеточных и митохондриальных мембран кишечного эпителия, облегчая трансмембранный транспорт катионов кальция. Основным признаком недостаточности витамина D является рахит и размягчение костей. При недостаточности кальцитриола или нарушении передачи его сигнала клеткам-мишеням у детей развивается рахит. У больных наблюдаются нарушении минерализации растущей костной ткани, замедленное прорезывание зубов. Недостаток кальцитриола может быть вызван дефицитом витамина D3 в пище, нарушением всасывания жирорастворимых витаминов, снижением активности 1αгидроксилазы почек. Снижение синтеза и секреции кальцитриола нарушает усвоение пищевого кальция и фосфатов. Для ребенка, костная ткань которого находится в состоянии постоянного роста, потеря этого источника кальция приведет к замедлению процесса формирования гидроксиапатитов. Усугубляет ситуацию ПТГ, секреция которого возрастает.

96.Взаимосвязь обмена углеводов и липидов.

Синтез глюкозы из аминокислот и глицерина. Биосинтез жиров и аминокислот из углеводов.

Обмен веществ, или метаболизм, — лежащий в основе жизни закономерный порядок превращения веществ и энергии в живых системах, направленный на их сохранение и самовоспроизведение; совокупность всех химических реакций, протекающих в организме. Все превращения органических веществ, процессы анаболизма и катаболизма тесно связаны друг с другом.На I этапе полисахариды расщепляются до моносахаридов (обычно гексоз); жиры распадаются на глицерин и высшие жирные кислоты, а белки – на составляющие их свободные аминокислоты. Указанные процессы в основном являются гидролитическими, поэтому освобождающаяся в небольшом количестве энергия почти целиком используется организмами в качестве тепла. На II этапе мономерные молекулы (гексозы, глицерин, жирные кислоты и аминокислоты) подвергаются дальнейшему распаду, в процессе которого образуются богатые энергией фосфатные соединения и ацетил-КоА. На III этапе ацетилКоА (и некоторые другие метаболиты, например α-кетоглутарат, оксалоацетат) подвергаются окислению («сгоранию») в цикле ди- и трикарбоновых кислот Кребса. Окисление сопровождается образованием восстановленных форм НАДН + Н+ и ФАДН2.На IV этапе осуществляется перенос электронов от восстановленных нуклеотидов на кислород (через дыхательную цепь). Он сопровождается образованием конечного продукта – молекулы воды. Этот транспорт электронов сопряжен с синтезом АТФ в процессе окислительного фосфорилирования. Для некоторых аминокислот (аланин, аспарагиновая и глутами-новая кислоты) связь с глюконеогенезом является непосредственной, для других она осуществляется через побочные метаболические пути. Следует особо подчеркнуть, что три α-кетокислоты (пируват, оксалоацетат и кетоглутарат), образующиеся соответственно из аланина, аспартата и глутамата, не только служат исходным материалом для синтеза глюкозы, но являются своеобразными кофакторами при распаде ацетильных остатков всех классов пищевых веществ в цикле Кребса для получения энергии. Процесс синтеза углеводов из аминокислот получил название глюконеогенеза. Исходными субстратами для глюконеогенеза являются те аминокислоты, распад которых сопровождается образованием прямо или опосредованно пировиноградной кислоты (например, аланин, серин, треонин и цистеин). Взаимосвязь обмена углеводов, жиров, белков проявляется в двух аспектах: а) в наличии единых промежуточных продуктов обмена и б) во взаимопревращениях углеродов, жиров, белков. Таким образом, процессы распада жиров, белков, углеводов сходятся (в большинстве своем на стадии образования ацетил КоА), образуя в дальнейшем единый метаболический цикл (цикл трикарбоновых кислот), завершающий их превращения. Этим достигается определенная экономия на разнообразии ферментов, на внутриклеточных структурных образованиях, обеспечивающих

локализацию

ферментных

систем

и процессов. В условиях

истощения

углеводных

ресурсов

организма жиры начинают

энергично использоваться в качестве источника энергии. При этом жирные кислоты или непосредственно используются тканями, или превращаются в печени в кетоновые тела, которые поступают в кровь и также утилизируются тканями в качестве энергетического субстрата. Из другого продукта мобилизации жира – глицерина образуется глюкоза , которая поступая в кровь , обеспечивает энергетическим сырьем ткани , предпочитающие глюкозу другим субстратам . При избыточном поступлении в организм углеводов они могут превращаться в жиры . При этом глицерин образуется из промежуточного продукта гликолизафосфоглицеринового альдегида , а непосредственным сырьем для синтеза ж.к. является ацетил КоА , образовавшийся при распаде углеводов . Часть аминокислот организма вообще не способен образовывать из других веществ , другие могут быть синтезированы . Но для этого требуется включить в их состав аминогруппу . Источником аминогруппы могут служить другие аминокислоты или свободный аммиак , в свою очередь , образующийся при дизаминировании аминокислот. Т.о. взаимосвязь обмена углеводов, жиров, белков и их взаимопревращения имеет чрезвычайно важное значение для организма человека и животных. Также это обеспечивает возможность создания в организме запаса энергетических субстратов при любом характере питания. Наличие углеводных депо, возможность образования углеводов из продуктов не углеводной природы играет чрезвычайную роль в жизни человека. Благодаря этому обеспечивается относительное постоянство концентрации глюкозы в крови и непрерывное снабжение ею тканей, использующих глюкозу в качестве основного энергетического субстрата (мозговые ткани, почки, эритроциты и пр.).

97.Механизмы обезвреживания токсических

веществ в печени. Микросомальное окисление. Реакции конъюгации.

Печень - самая крупная железа пищеварительного тракта. Она выполняет в организме функцию биохимической лаборатории и играет важную роль в белковом, углеводном и липидном обменах. В печени синтезируются важнейшие белки плазмы крови: альбумин, фибриноген, протромбин, церулоплазмин, трансферрин, ангиотензиноген и др. Через эти белки опосредуется участие печени в таких важных процессах, как поддержание онкотического давления, регуляция АД и объёма циркулирующей крови, свёртывание крови, метаболизм железа и др. Важнейшая функция печени - детоксикационная (или барьерная). Она имеет существенное значение для сохранения жизни организма. В печени происходит обезвреживание таких веществ, как билирубин и продукты катаболизма аминокислот в кишечнике, а также инактивируются лекарственные препараты и токсические вещества экзогенного происхождения, NH3 - продукт азотистого обмена, который в результате ферментативных реакций превращается в нетоксичную мочевину, гормоны и биогенные амины. Вещества, поступающие в организм из окружающей среды и не используемые им для построения тканей организма или как источники энергии, называют чужеродными веществами, или ксенобиотиками. Чужеродные вещества, или ксенобиотики, делят на 2 группы:

продукты хозяйственной деятельности человека (промышленность, сельское хозяйство, транспорт); вещества бытовой химии - моющие средства, вещества для борьбы с насекомыми, парфюмерия.

Обезвреживание ксенобиотиков происходит путём химической модификации и протекает в 2 фазы. В результате этой серии реакций ксенобиотики становятся более гидрофильными и выделяются с мочой. Вещества, более гидрофобные или обладающие большой молекулярной массой, чаще выводятся с желчью в кишечник и затем удаляются с фекалиями. Микросомальные ферменты катализируют реакции С-гидроксилирования, N-гидроксилирования, О-, N-, S- дезалкилирования, окислительного дезаминирования, сульфоокисления и эпоксидирования. Первый этап инактивации большинства ксенобиотиков начинается с реакции их окисления ферментами мембран гладкого ЭР клеток печени. При выделении из клеток фрагменты этих мембран образуют микросомы, поэтому окисление субстратов при участии электронтранспортной системы, локализованной в мембране ЭР, называют микросомальным окислением.

Вторая фаза - реакции конъюгации, в результате которых чужеродное вещество, модифицированное ферментными сисгемами ЭР, связывается с эндогенными субстратами - глюкуроновой кислотой, серной кислотой, глицином, глутатионом. Образовавшийся конъюгат удаляется из организма. Микросомальная система не содержит растворимых в цитозоле белковых компонентов, все ферменты - мембранные белки, активные центры которых локализованы на цитоплазматической поверхности ЭР. Система включает несколько белков, составляющих электронтранспортные цепи (ЦПЭ). В ЭР существуют две такие цепи, первая состоит из двух ферментов - NADPH-P450 редуктазы и цитохрома Р450, вторая включает фермент NADH-цитохром-b5 редуктазу, цитохром b5 и ещё один фермент - стеароил-КоА-десатуразу. Электронтранспортная цепь - NADPH-P450 редуктаза - цитохром Р450. В большинстве случаев донором электронов (e) для этой цепи служит NADPH, окисляемый NАDРН- Р450 редуктазой. Фермент в качестве простетической группы содержит 2 кофермента - флавинадениндинуклеотид (FAD) и флавинмононуклеотид (FMN). Протоны и электроны с NADPH переходят последовательно на коферменты NADPH-P450 редуктазы. Восстановленный FMN окисляется цитохромом Р450. Цитохром Р450 - гемопротеин, содержит простетическую группу гем и имеет участки связывания для кислорода и субстрата (ксенобиотика). Протоны и электроны с NADH переходят на кофермент редуктазы FAD, следующим акцептором электронов служит Fe3+ цитохрома b5. Цитохром b5 в некоторых случаях может быть донором электронов (e) для цитохрома Р450 или для стеароил-КоА-десатуразы, которая катализирует образование двойных связей в жирных кислотах, перенося электроны на кислород с образованием воды. NADHцитохром b5 редуктаза - двухдоменный белок. Глобулярный цитозольный домен связывает простетическую группу - кофермент FAD, а единственный гидрофобный "хвост" закрепляет белок в мембране. Цитохром b5- гемсодержащий белок, который имеет домен, локализованный на поверхности мембраны ЭР, и короткий "заякоренный" в липидном бислое спирализованный домен. Важнейшие свойства ферментов микросомального окисления: широкая субстратная специфичность, которая позволяет обезвреживать самые разнообразные по строению вещества, и регуляция активности по механизму индукции. Вторая фаза обезвреживания веществ - реакции конъюгации, в ходе которых происходит присоединение к функциональным группам, образующимся на первом этапе, других молекул или групп эндогенного происхождения, увеличивающих гидрофильность и уменьшающих токсичность ксенобиотиков. Все ферменты, функционирующие во второй фазе обезвреживания ксенобиотиков, относят к классу трансфераз. Они характеризуются широкой субстратной специфичностью. УДФ-глюкуронилтрансферазы локализированные в основном в ЭР уридин-дифосфат (УДФ)- глюкуронилтрансферазы присоединяют остаток глюкуроновой кислоты к молекуле вещества, образованного в ходе микросомального окисления. Цитоплазматические cульфотрансферазы катализируют реакцию конъюгации, в ходе которой остаток серной кислоты (-SO3H) от 3'-фосфоаденозин-5'- фосфосульфата (ФАФС) присоединяется к фенолам, спиртам или аминокислотам. Особое место среди ферментов, участвующих в обезвреживании ксенобиотиков, инактивации нормальных метаболитов, лекарств, занимают глутатионтрансферазы (ГТ). Глутатионтрансферазы функционируют во всех тканях и играют важную роль в инактивации собственных метаболитов: некоторых стероидных гормонов, простагландинов, билирубина, жёлчных кислот. Глутатион - трипептид Глу-Цис-Гли (остаток глутаминовой кислоты присоединён к цистеину карбоксильной группой радикала). ГТ связывают очень многие гидрофобные вещества и инактивируют их, но химической модификации с участием глугатиона подвергаются только те, которые имеют полярную группу. То есть субстратами служат вещества, которые, с одной стороны, имеют электрофильный центр (например, ОН-группу), а с другой стороны - гидрофобные зоны. Ацетилтрансферазы катализируют реакции конъюгации - переноса ацетильного остатка от ацетил-КоА на азот группы - SO2NH2, например в составе сульфаниламидов. Эпоксидгидролаза (эпоксидгидратаза) присоединяет воду к эпоксидам бензола, бензпирена и другим полициклическим углеводородам, образованным в ходе первой фазы обезвреживания, и превращает их в диолы.

98.Биотрансформация лекарств в печени.

Лекарства, поступившие в организм, проходят следующие превращения: всасывание; связывание с белками и транспорт кровью;взаимодействие с рецепторами;распределение в тканях;метаболизм и выведение из организма.

Механизм первого этапа (всасывание) определяется физикохимическими свойствами лекарства. Гидрофобные соединения легко проникают через мембраны простой диффузией, в то время как лекарственные вещества, нерастворимые в липидах, проникают через мембраны путём трансмембранного переноса при участии разных типов транслоказ. Некоторые нерастворимые крупные частицы могут проникать в лимфатическую систему путём пиноцитоза. Действие на организм большинства лекарств прекращается через определённое время после их приёма. Прекращение действия может происходить потому, что лекарство выводится из организма либо в неизменённом виде - это характерно для гидрофильных соединений, либо в виде продуктов его химической модификации (биотрансформации). Биохимические превращения лекарственных веществ в организме человека, обеспечивающие их инактивацию и детоксикацию, являются частным проявлением биотрансформации чужеродных соединений. В результате биотрансформации лекарственных веществ может произойти:инактивация лекарственных веществ, т.е. снижение их фармакологической активности;повышение активности лекарственных веществ;образование токсических метаболитов. Инактивация лекарственных веществ, как и всех ксенобиотиков, происходит в 2 фазы. Первая фаза - химическая модификация под действием ферментов монооксигеназной системы ЭР. Например, лекарственное вещество барбитурат в ходе биотрансформации превращается в гидроксибарбитурат, который далее участвует в реакции конъюгации с остатком глюкуроновой кислоты. Фермент глюкуронилтрансфераза катализирует образование барбитуратглюкуронида, в качестве источника глюкуроновой кислоты используется УДФ-глюкуронил. В первую фазу обезвреживания под действием монооксигеназ образуются реакционно-способные группы -ОН, -СООН, -NH2, -SH и др. Химические соединения, уже имеющие эти группы, сразу вступают во вторую фазу обезвреживания - реакции конъюгации. Вторая фаза инактивации - конъюгация (связывание) лекарственных веществ, как подвергшихся каким-либо превращениям на первом этапе, так и нативных препаратов. К продуктам, образованным ферментами микросомального окисления, может присоединяться глицин по карбоксильной группе, глюкороновая кислота или остаток серной кислоты - по ОН-группе, ацетильный остаток - к NH2-гpyппe. В превращениях второй фазы инактивации лекарственных веществ принимают участие эндогенные соединения, образующиеся в организме с затратой энергии: АТФ), УДФ-глюкуронат (УТФ), Ацетил-КоА (АТФ) и др. Поэтому можно сказать, что реакции конъюгации сопряжены с использованием энергии этих макроэргических соединений.Примером реакции конъюгации может служить глюкуронирование гидроксибарбитурата под действием глюкуронилтрансферазы.

99Распад хромопротеинов. Желчные пигменты, их образование и выделение.

Хромопротеины-сложные

белки,состоящие

из

2-х

компонентов(простой

белок

и

окрашенное

соединение=пигмент).Выделяют:гемопротеины(простетическая гр.=гемм); флавопротеины(простетическая гр.-вит.В2=рибофлавин и производные(ФАД,ФМН)); производные витамина А- ретинатопротеины(родопсин,йодопсин);производные вит.В12; магнийпорферины(хлорофилл).Переваривание хромопротеинов.Гемоглобин под действием НСl распадается на гемм и глобин.Глобин под действием протеаз ЖКТ превращается в аминокислоты,переходящие в кровь.Гем-превращается в гематин,а затем в кал.Гем распадается на желчные пигменты(билирубин) и железо(идет на синтез железосодержащих белков или депонируется в виде ферритина).Распад начинается с разрыва α-метиновой связи м- ду 1 и 2 пиррольными кольцами,окисления метиленовой группы до СО2 под действием гемоксигеназы на мемебране ЭПС,и гемог лобин переходит в вердоглобин.Вердоглобин распадается с освобождением Fе(3+) и белка-глобина, и образуется биливердин(коричневооранжевый пигмент).Затем биливердин под действием биливердинредуктазы превращается в билирубин(красно-желтый пигмент).Билирубин транспортируется альбуминами в печень,и называется неконъюгированным(непрямой или свободный).На поверхности Кл. печени происходит отделение билирубина от альбумина,и образуется комплекс билирубина с липидами мембраны.С помощью белков-переносчиков(лигандин и протеин-Z) билирубин путем облегченной диффузии поглощается гепатоцитами. Билирубин под действием УДФ-глюкуронилтрансферазы переходит в билирубин-моноглюкуронид,кот-й под действием того же фермента переходит в билирубин-диглюкуронид.Индукторами фермента явл. Фенобарбитал. Моно- и диглюкурониды билирубина=конъюгированный(прямой или связанный) билирубин. От билирубинглюкуронидов под действием β- глюкуронидаз(бактериальные ферменты) отщепляется глюкуроновая

кислота,и

образуется

билирубин,который

переходит

в

мезобилирубин(при

введении

4Н+

),затем

в

уробилиноге,стеркобилиноген,который под действием кислорода переходит в стеркобилин в составе кала.Также уробилин может переходить в кровь,далее в печень и превращаться в моно- и дипирролы.Еще уробилин из крови переходит в мочу,превращаясь в уробилиноген,который под действием кислорода воздуха превращается в уробилин в составе мочи.Билирубин и его производные называют желчными пигментами,т.к. они обнаруживаются в желчи.Нарушения: при железодефицитной анемии уменьшается размер эритроцитов и их пигментация (гипохромные эритроциты малых размеров). В эритроцитах уменьшается содержание гемоглобина, понижается насыщение железом трансферрина, а в тканях и плазме крови снижается концентрация ферритина. Причина этих изменений - недостаток железа в организме. Гемохроматоз возникает при избытке железа в организме вследствие повышения его всасывания в кишечнике. Когда содержание билирубина превышает норму, говорят о гипербилирубинемии. В зависимости от того, концентрация какого типа билирубина повышена в плазме - неконъюгированного или конъюгированного, - гипербилирубинемию классифицируют как неконъюгированную и конъюгированную.Выделяют гемолитическую(надпеченочную), печеночную(паренхиматозная) и подпеченочную(застойная) желтухи. Гемолитическая (надпечёночная) желтуха - результат интенсивного гемолиза эритроцитов. Она обусловлена чрезмерным образованием билирубина, превышающим способность печени к его выведению. Частая разновидность гемолитической желтухи новорождённых - "физиологическая желтуха", наблюдающаяся в первые дни жизни ребёнка. Причиной повышения концентрации непрямого билирубина в крови служит ускоренный гемолиз и недостаточность функции белков и ферментов печени, ответственных за поглощение, конъюгацию и секрецию прямого билирубина. Печёночно-клеточная (печёночная) желтуха обусловлена повреждением гепатоцитов и жёлчных капилляров. При печёночно-клеточной желтухе повышается концентрация в крови как общего билирубина, так и обеих его фракций - неконъюгированного (непрямого) и конъюгированного (прямого). Механическая, или обтурационная (подпечёночная), желтуха развивается при нарушении желчеотделения в двенадцатиперстную кишку. Это может быть вызвано закупоркой жёлчных протоков

100.Ферменты кров и их диагностическое

значение.

Кровь - жидкая внутренняя среда организма, объём которой у взрослого человека составляет 5-6 л. Жидкой части крови - плазма, содержит около 7% белков и низкомолекулярные вещества. Форменные элементы – это клетки крови: эритроциты, лейкоциты и тромбоциты. Основные функции крови обусловлены тем, что она циркулирует по системе кровеносных сосудов и транспортирует метаболиты между разными органами. В циркулирующей крови содержатся проферменты протеолитических ферментов: фактор II (протромбин), фактор VII (проконвертин), фактор IX (Кристмаса), фактор X (Стюарта). Находящиеся в крови факторы Va (акцелерин) и VIIIa (антигемофильный фактор), а также мембранный белок - тканевый фактор (ТФ, фактор III) являются белками-активаторами этих ферментов. При повреждении сосуда "включается" каскадный механизм активации ферментов с последовательным образованием трёх связанных с фосфолипидами клеточной мембраны ферментных комплексов. Каждый комплекс состоит из протеолитического фермента, белка-активатора и ионов Са2+ . Из содержащихся в крови различных ферментов практическое значение имеет определение в первую очередь общей липазы, хинин - и атоксил-резистентных форм, а также диастазы. Незначительное увеличение диастазы может наблюдаться при заболеваниях желчныx путей (желчнокаменная болезнь, холецистит, ангиохолит). Увеличение содержания диастазы крови наблюдается также при сахарном диабете. Липаза имеет из всех ферментов наибольшее диагностическое значение. Понижение общего липолитического индекса крови наблюдается при многих инфекционных заболеваниях, как, например, при сыпном тифе, брюшном тифе, туберкулезе легких и других органов. Ферменты плазмы крови можно разделить на 2 группы. Первая, относительно небольшая группа ферментов активно секретируется в плазму крови определёнными органами. Например, печень синтезирует неактивные предшественники ферментов свёртывающей системы крови. Ко второй относят большую группу ферментов, высвобождающихся из клеток во время их нормального функционирования. Так, появление в плазме крови ферментов, имеющих только цитозольную локализацию, свидетельствует о воспалительном процессе; при обнаружении митохондриальных или ядерных ферментов можно говорить о более глубоких повреждениях клетки, например о некрозе. Ферменты сыворотки крови:

-ферменты, поступающие в плазму, и выполняющие в ней специфические функции – истинно плазменные ферменты. В плазме их активность много больше, чем в органах (церулоплазмин, псевдохолинэстераза, липопротеинлипаза, белковые факторы систем свертывания крови, фибринолиза и кининогенеза, ренин). Снижение активности этих ферментов в плазме будет свидетельствовать о снижении синтетической способности клеток или о накоплении ингибиторов в плазме крови.

-ферменты, не характерные для плазмы – органоспецифичные. Выделяют две группы этих ферментов:

1.Ферменты клеточного метаболизма – их активность резко повышается в плазме крови в случае нарушения проницаемости клеточных мембран или их альтерации:Например,при нарушениях скелетных мышц – повыш-ся активность мышечного изофермента креатинкиназы (КК-MM), алкогольдегидрогеназы;костной ткани – щелочной фосфатазы (ЩФ), альдолазы (АЛД),гепатоцитов – аланинаминотрансферазы, глутаматдегидрогеназы, холинэстеразы, сорбитолдегидрогеназы;желчевыводящих путей – щелочной фосфатазы, γ-глутамилтранспептидазы (γ-ГТП).

2. Ферменты, секретируемые в выводные протоки желчных путей, панкреатические и слюнные протоки. В норме активность таких ферментов в плазме намного ниже, чем в клетках и имеет постоянное значение (α-амилаза, липаза поджелудочной железы). Изучение активности этих ферментов позволяет судить о функционировании соответствующего органа.

101.Строение клеточных мембран.Общие

свойства мембран.

К основным функциям мембран можно отнести:отделение клетки от окружающей среды и формирование внутриклеточных компартментов (отсеков);контроль и регулирование транспорта огромного разнообразия веществ через мембраны;участие в обеспечении межклеточных взаимодействий, передаче внутрь клетки сигналов;преобразование энергии пищевых органических веществ в энергию химических связей молекул АТФ. Плазматическая мембрана, окружающая каждую клетку, определяет её величину, обеспечивает транспорт малых и больших молекул из клетки и в клетку, поддерживает разницу концентраций ионов по обе стороны мембраны. Мембрана участвует в межклеточных контактах, воспринимает, усиливает и передаёт внутрь клетки сигналы внешней среды. С мембраной связаны многие ферменты, катализирующие биохимические реакции. Ядерная оболочка состоит из внешней и внутренней ядерных мембран. Ядерная оболочка имеет поры, через которые РНК проникают из ядра в цитоплазму, а регуляторные белки из цитоплазмы в ядро.Внутренняя ядерная мембрана содержит специфические белки, имеющие участки связывания основных полипептидов ядерного матрикса. Мембрана ЭР имеет многочисленные складки и изгибы. Она образует непрерывную поверхность, ограничивающую внутреннее пространство, называемое полостью ЭР. Шероховатый ЭР связан с рибосомами, на которых происходит синтез белков плазматической мембраны, ЭР, аппарата Гольджи, лизосом, а также секретируе-мых белков. Области ЭР, не содержащие рибосом, называют гладким ЭР. Аппарат Гольджи - важная мембранная органелла, отвечающая за модификацию, накопление, сортировку и направление различных веществ в соответствующие внутриклеточные компартменты, а также за пределы клетки. Специфические ферменты мембраны комплекса Гольджи, гликозилтрансферазы, гликозилируя белки по остаткам серина, треонина или амидной группе аспарагина, завершают образование сложных белков - гликопротеинов. Митохондрии - органеллы, окружённые двойной мембраной, специализирующиеся на синтезе АТФ путём окислительного фосфорилирования. Отличительная особенность внешней митохондриальной мембраны - содержание большого количества белка порина, образующего поры в мембране. Благодаря порину внешняя мембрана свободно проницаема для неорганических ионов, метаболитов и даже небольших молекул белков. Для больших белков внешняя мембрана непроницаема, это позволяет митохондриям удерживать белки межмембранного пространства от утечки в цитозоль. Для внутренней мембраны митохондрий характерно высокое содержание белков,которые выполняют в основном каталитическую и транспортную функции. Транслоказы мембраны обеспечивают избирательный перенос веществ из межмембранного пространства в мат-рикс и в обратном направлении, ферменты участвуют в транспорте электронов (цепи переноса электронов) и синтезе АТФ. Мембрана лизосом играет роль "щита" между активными ферментами (более 50), обеспечивающими реакции распада белков, углеводов, жиров, нуклеиновых кислот, и остальным клеточным содержимым. Мембрана содержит уникальные белки, например АТФ-зависимую протонную помпу (насос), которая поддерживает кислую среду (рН 5), необходимую для действия гидролитических ферментов (протеаз, липаз), а также транспортные белки, позволяющие продуктам расщепления макромолекул покидать лизосому. Большинство белков лизосомальной мембраны сильно гликозилированы, углеводные составляющие, находящиеся на внутренней поверхности мембраны, защищают их от действия протеаз. Биологические мембраны построены из липидов и белков, связанных друг с другом с помощью нековалентных взаимодействий. Основу мембраны составляет двойной липидный слой, в формировании которого участвуют фосфолипиды, гликолипиды и холестерол. Липидный бислой образован двумя рядами липидов, гидрофобные радикалы которых спрятаны внутрь, а гидрофильные группы обращены наружу и контактируют с водной средой. Белковые молекулы как бы растворены в липидном бислое. Липиды мембран - амфифильны, т.е. в молекуле есть как гидрофильные группы (полярные "головки"), так и алифатические радикалы (гидрофобные "хвосты"). Все фосфолипиды можно разделить на 2 группы - глицерофосфолипиды и сфингофосфолипиды. Глицерофосфолипиды относят к производным фосфатидной кислоты. Наиболее распространённые глицерофосфолипиды мембран - фосфатидилхолины и фосфатидилэтаноламины. В плазматических мембранах клеток в значительных количествах содержатся сфингомиелины. Сфингомиелины построены на основе церамида - ацилированного аминоспирта сфингозина. В гликолипидах гидрофобная часть представлена церамидом. В зависимости от длины и строения углеводной части различают цереброзиды, содержащие моноили олигосахаридный остаток, и ганглиозиды, к ОН-группе которых присоединён сложный, разветвлённый олигосахарид, содержащий N-ацетилнейраминовую кислоту (NANA). Холестерол присутствует во всех мембранах животных клеток. Его молекула состоит из жёсткого гидрофобного ядра и гибкой углеводородной цепи, единственная гидроксильная группа является "полярной головкой". Гидроксильная группа холестерола контактирует с гидрофильными "головками" этих липидов. Белки отвечают за функциональную активность мембран. Одни из них обеспечивают транспорт определённых молекул и ионов, другие являются ферментами, третьи участвуют в связывании цитоскелета с внеклеточным матриксом или служат рецепторами для гормонов, медиаторов. Они могут глубоко проникать в липидный бислой или даже пронизывать его - интегральные белки, либо разными способами прикрепляться к мембране - поверхностные белки.

102 Избирательная проницаемость мембран.

Механизмы переноса веществ через мембраны.

КЛЕТОЧНАЯ МЕМБРАНА (цитоплазматическая мембрана), структура, отделяющая цитоплазму клетки от внешней среды, а у растительных клеток – от клеточной оболочки. Она имеет толщину 8—12 нм и состоит из 3 слоёв. Мембрана обладает избирательной проницаемостью (полупроницаемостью): пропускает в клетку воду, ионы, питательные вещества, а из клетки – продукты обмена; при этом высокомолекулярные вещества через мембрану не проходят. Таким образом, клеточная мембрана регулирует транспорт веществ в клетку и из клетки. Кроме того, различные соединения и твёрдые частицы могут поступать в клетку путём пиноцитоза и фагоцитоза. У большинства клеток мембрана имеет микроворсинки, выросты, выпячивания и впячивания. Только у эритроцитов мембрана гладкая. В случае любого повреждения (нарушения целостности) мембраны клетка погибает. В формировании клеточной мембраны участвуют эндоплазматическая сеть и аппарат Гольджи.

Самопроизвольные процессы сопровождаются уменьшением свободной энергии системы. Перенос ионов через мембрану из области µ2 в область с µ1 происходит самопроизвольно при µ2 > µ1. Такой транспорт называют пассивным (это, так сказать, перенос "под гору")В случае незаряженных молекул (неэлектролитов) процесс переноса частиц обусловлен их диффузией, которая приводит к суммарному потоку вещества из области большей в область меньшей концентрации. В отсутствие различия концентраций

по сторонам мембраны неэлектролиты через мембрану не переносятся, но ионы могут переноситься под влиянием электрического поля; это явление, как известно,

называется электрофорезом. В общем случае электрофорез и диффузия сочетаются и говорят об электродиффузии ионов через мембраны Пассивный перенос может происходить непосредственно через

липидный бислой мембран (простая электродиффузия), через водные каналы (поры) в мембране или с помощью подвижных переносчиков, растворенных в липидной фазе мембран. Следует подчеркнуть, что как направление, так и скорость процесса в присутствии переносчиков или каналов все равно диктуется законами электродиффузии; посему для этих двух механизмов применяют термин облегченная (facilitated) диффузия. Между обычной диффузией и переносом с помощью подвижного переносчика (а часто и по каналам) имеется важное различие. Скорость обычной диффузии, при прочих равных условиях, прямо пропорциональна концентрации переносимого вещества. В случае переноса с участием переносчика или через узкую пору существует

предельная скорость переноса, которая наступает, когда все молекулы переносчика (или все каналы) окажутся занятыми переносимыми молекулами. Поэтому такой транспорт называют насыщаемым.

Активный транспорт Поток молекул может быть направлен в сторону более высокой

концентрации, также как и поток катионов – в сторону с большим потенциалом (перенос ионов "в гору", т. е. из 4 области с µ1 в область с µ2 при µ1 <µ) может происходить лишь за

счет одновременнойзатраты энергии в сопряженном процессе. Такой транспорт называют активным. Различают первичный и вторичный (или сопряженный) активный транспорт. Известны четыре типа молекулярных машин, осуществляющих первичный активный транспорт ионов.

Кальций-транспортная АТФаза (Са-АТФаза) Это белок, входящий в состав мембран саркоплазматического ретикулума скелетных мышц и сердца, а также мембран эритроцитов и других клеточных мембран. При гидролизе одного моля АТФ Са-АТФаза переносит через мембрану (внутрь пузырьков саркоплазматического ретикулума или наружу из клетки) 2 моля Ca2+ , причем ионы кальция могут переноситься из области более низких (10–7 М) в область более высоких концентраций (10–3 М)

Na-K-АТФаза

Этот фермент содержится во всех клеточных мембранах и осуществляет перенос двух ионов K+ в клетку и трех ионов Na+ из клетки при гидролизе одной молекулы АТФ. При этом на перенос ионов калия энергия почти не затрачивается, поскольку калий переносится хотя и в сторону большей концентрации, но зато в область меньшего потенциала.

Н+-АТФаза Этот фермент, или лучше сказать ферментный комплекс (состоящий

из нескольких субъединиц), входит в состав всех энергопреобразующих мембран, т.е. внутренней мембраны митохондрий, мембран хлоропластов и хроматофоров фотосинтезирующих растений и бактерий, а также клеточных мембран бактерий. Все эти мембранные структуры участвуют в синтезе АТФ, причем Н+-АТФаза участвует в этом процессе, выполняя функцию АТФ-синтетазы

Соседние файлы в предмете Биохимия