
- •1.Канал без памяти
- •2.Классификация корректирующих кодов
- •3.Теорема Найквиста
- •4. Алгоритмы сжатия без потерь: rle, lzw (Лемпелла – Зива-Уэлча), Хаффмана
- •5. Методы цифровой модуляции
- •6. Согласованный фильтр
- •7. Методы цифровой полосовой модуляции
- •8. Расширенный код Голея
- •9. Циклические коды
- •10.Дк без памяти, с памятью, дискретный симметричный канал
- •11. Циклические коды: Хемминга, Боуза-Чоудхури-Хоквингема(бчх), Рида – Соломона
- •12. Многопозиционная модуляция
- •13. История развития и перспективы цифровых систем передачи
- •14. Устройства и принципы работы поэлементной синхронизации
- •16. Коды Хемминга
- •17. Факсимильная передача информации
- •18. Обнаружение двоичных сигналов в гауссовом шуме
- •19 Корректирующие коды
- •20 Сверточные коды
- •21. Применение эффективного (статистического) кодирования для сжатия данных
- •22 Критерий качества, отношение сигнал-шум
- •23. Мягкое и жесткое декодирование.
- •24. Линейный фильтровой канал.
- •25. Отношение «сигнал-шум» в цифровых системах связи.
- •26. Теорема Найквиста, импульс Найквиста, методы парциальных отчетов
- •27. Математические модели каналов связи
- •28.Фазовая манипуляция (фм)
- •29. Синхронизация в синхронных и асинхронных системах
- •30. Методы декодирования корректирующих кодов
- •31. Кодовое расстояние и корректирующая способность кода
- •32. Модели дискретных каналов
- •33. Методы и устройства групповой и цикловой синхронизации
- •34. Назначение функциональных узлов, основные понятия, терминологии и определения
- •36 Передача дискретных сигналов
- •37. Определения понятий непрерывный, дискретного канала, основные характеристики
- •38. Частотная манипуляция
- •39. Основные принципы кодирования
12. Многопозиционная модуляция
На практике среди многопозиционных методов модуляции наиболее широкое применение нашли многократные ОФМ (ДОФМ, ТОФМ и т.д.).
При
многократной ОФМ каждой комбинации
двоичных информационных символов
ставится в соответствие определенное
изменение фазы несущей частоты. Если
к - символов, то общее число комбинаций
равно
,следовательно
необходимо иметь
значений
фазовых сдвигов несущий частоты. Обычно
эти сдвиги выбираются равными
=
90° и
=
45° (для ДОФМ и Т0ФМ соответственно).
В
качестве примера в табл.3.1 приведено
правило кодирования для ДОФМ, а на
рис.3.16 амплитудно-фазовая диаграмма
(первый вариант). Анализ показывает,
что второй вариант фазового сдвига
более приемлем с точки зрения возможности
выделения тактовой частоты. Демодулятор
ДОФМ реализуется так, что при сдвиге
фаз между предыдущей и последующей
посылками
=
45° на выходе получается 00, при
=2250
на выходе - 11, при
на
выходе - 01, при
-
10. Таким образом пои ДОФМ обеспечивается
вдвое большая эффективная скорость
передачи, поскольку каждое фазовое
состояние соответствует не одному биту
информации, как при ОФМ, а двум битам.
Однако помехоустойчивость ДОФМ ниже
чем ОФМ, ввиду меньшей разности фаз
между смежными фазовыми состояниями.
Такой же принцип используется и при реализации ТОФМ, однако при этом требуется более сложное оборудование. Основные параметры УПС на скорости передачи 2400 бит/с (ДОФМ) и 4800 бит/с (ТОФМ) нормируются рекомендациям МККТТ V.26 (V .26 бис) иV.27 (V .27 бис) соответственно.
13. История развития и перспективы цифровых систем передачи
Компьютерные технологии создали возможность для более быстрой обработки информации и более скоростной передачи данных между системами. В 80-х годах ХХ века операторы телефонной связи обнаружили, что неголосовой трафик более важен и начинает доминировать над голосовым. Был предложен проект ISDN[4], который описывал цифровую сеть с коммутацией пакетов, предоставляющую услуги телефонной связи и передачи данных. Цифровые системы передачи, сначала плезиохронные системы на основе ИКМ, а затем синхронные системы передачи иерархии SDH на основе оптоволокна позволяли обеспечить передачу данных на высокой скорости с малыми вероятностями двоичных ошибок. Но существующая технология коммутации пакетов (прежде всего, по протоколу X.25) не могла обеспечить передачу трафика в реальном масштабе времени (например, голоса), и многие сомневались, что когда-либо обеспечит[3]. Для передачи трафика в реальном масштабе времени в общественных телефонных сетях применяли технологию коммутации каналов (КК). Эта технология идеальна для передачи голоса, но для передачи данных она неэффективна. Поэтому телекоммуникационная индустрия обратилась к ITU для разработки нового стандарта для передачи данных и голосового трафика в сетях с широкой полосой пропускания[3]. В конце 80-х Международным телефонным и телеграфным консультативным комитетом CCITT (который затем был переименован в ITU-T) был разработан набор рекомендаций по ISDN второго поколения, так называемого B-ISDN (широкополосный ISDN), расширения ISDN. В качестве режима передачи нижнего уровнядля B-ISDN был выбран ATM[4]. В 1988 г. на собрании ITU в Женеве была выбрана длина ячейки ATM — 53 байт[5]. Это был компромисс между специалистами США, которые предлагали длину ячейки 64 байта и специалистами Европы, предлагавшими длину ячейки 32 байта. Ни одна сторона не смогла убедительно доказать преимущество своего варианта, поэтому в итоге объём «полезной» нагрузки составил 48 байт, а для поля заголовка (служебных данных) был выбран размер 5байт, минимальный размер, на который согласилась ITU. В 1990 г. был одобрен базовый набор рекомендаций ATM[6]. Базовые принципы ATM положены рекомендацией I.150[6]. Это решение было очень похоже на системы разработанные Coudreuse и Fraser. Отсюда начинается дальнейшее развитие ATM.