
- •Родионов в.И.
- •Конспект лекций
- •«Теория автоматического управления»
- •Содержание
- •Основные понятия и определения тау
- •Функциональные элементы сау
- •Классификация систем автоматического
- •1.3. Примеры систем автоматического управления
- •2. Математическое описание сау
- •Виды воздействий. Управляющие и возмущающие воздействия.
- •Вынужденное движение и собственные колебания системы.
- •2.1. Виды воздействий. Управляющие и возмущающие воздействия
- •Вынужденное движение и собственные колебания системы. Переходный и установившийся режимы
- •2.3. Передаточные функции
- •2.4. Переходная характеристика и весовая функция
- •Типовые звенья систем автоматического
- •2.6. Неустойчивые и неминимально–фазовые звенья
- •2.7. Структурные схемы сау
- •2.8. Составление и преобразование структурных схем сау
- •2.9. Передаточные функции замкнутой и разомкнутой
- •Установившиеся режимы
- •3.1. Точность сау в установившемся режиме
- •3.2. Установившиеся ошибки следящих систем
- •Частотные характеристики сау
- •Логарифмические амплитуднные и фазовые
- •3.5. Частотные характеристики типовых звеньев
- •3.6. Особенности частотных характеристик устойчивых
- •4. Устойчивость систем автоматического управления
- •4.1. Общие понятия об устойчивости заданного режима
- •4.2. Определение устойчивости по а.М. Ляпунову
- •3. Критерий устойчивости гурвица
- •Таким образом, кроме положительности коэффициентов а30; а20; а10; а00
- •4.4. Критерий михайлова
- •4.5. Критерий найквиста
- •4.6. Суждение об устойчивости по лафчх
- •4.7. Выделение областей устойчивости
- •Суждение об устойчивости системы
- •5. Качество сау
- •5.1. Основные показатели качества
- •5.2. Методы построения переходных процессов
- •Преобразования Фурье имеют вид:
- •5.2.1 . Частотный метод анализа качества сау,
- •Приближенный метод построения кривой переходного процесса с помощью трапециидальных частотных
- •Лекция 14
- •5.3. Построение вещественной частотной характеристики замкнутой системы по частотным характеристикам
- •План лекции:
- •5.5. Косвенные оценки качества, связанные с распределением нулей и полюсов передаточной функции
- •5.7. Интегральные оценки качества
- •5.8. Косвенные оценки качества, связанные с видом
- •5.8.1. Анализ качества по ачх замкнутой системы
- •5.8.2. Оценка качества сау по логарифмическим частотным
- •Приближенная оценка вида переходного процесса
- •6. Динамический синтез сау
- •6.1. Общие понятия синтеза сау
- •6.2. Этапы синтеза сау
- •6.3. Требования, предъявляемые к динамическим
- •Методы коррекции динамических свойств сау.
- •5. Методы коррекции динамических свойств системы,
- •6.5. Динамический синтез сау, основанный
- •6.6. Синтез последовательного корректирующего устройства
- •6.7. Синтез параллельного корректирующего устройства
- •7. Методы синтеза, основанные на теории
- •7.1. Уравнения системы в пространстве состояний
- •7.2. Коррекция системы в пространстве состояний
- •7.3. Прямой корневой метод синтеза
- •7.4. Прямой корневой метод синтеза сау по координатам пространства состояний
- •8. Нелинейные системы автоматического управления. Аналитические методы исследования Лекция 22
- •8.1Метод возмущений (метод малого параметра).
- •8.2Метод возмущений (метод малого параметра)
- •8.2. Методы минимизации невязки. Метод гармонического баланса
- •Методы минимизации невязки
- •Метод гармонического баланса
- •8.3. Метод описывающей функции. Асимптотические методы
- •8.4. Метод припасовывания.
- •8.5. Метод точечного преобразования.
- •8.6. Примеры точечного преобразования.
- •8.7. Исходные положения метода гармонической линеаризации.
- •8.7. Частотный способ определения симметричных автоколебаний.
- •9.. Прохождение случайных воздействий
- •9.1. Интегральное Уравнение связи
- •9.2. Спектральное уравнение связи
- •9.3. Определение динамических характеристик сау
- •9.4. Методы определения ошибок линейных сау,
- •9.5. Эквивалентное представление стационарного
- •9.6. Расчет флуктуационных ошибок и ошибок
- •9.7. Расчет дисперсии помехи с помощью корреляционной функции. Вычисление среднеквадратической ошибки следящей системы
- •9.8. Расчет дисперсии помехи с помощью
- •9.9 Вычисление среднеквадратической ошибки
8.4. Метод припасовывания.
План.
Понятие кусочно-линейной системы.
Метод припасовывания.
Определение переходного процесса.
Определение периодического решения (автоколебаний).
Часто нелинейные системы представляются как кусочно-линейные, т. е. их динамические свойства описываются линейными дифференциальными уравнениями, разными для разных участков процесса управления. Таковыми, например, были все нелинейные системы, рассмотренные в предыдущей главе.
Метод припасовывания состоит в том, что линейные дифференциальные уравнения решаются в общем виде отдельно для каждого участка процесса, на котором они справедливы. Затем на каждом участке в полученных решениях произвольные постоянные определяются таким образом, чтобы все соседние участки правильно состыковывались друг с другом. Это делается следующим образом: по заданным начальным условиям процесса определяются произвольные постоянные в общем решении для первого участка. Значения фазовых координат в конце первого участка служат начальными условиями для второго участка и т. д.
Вообще говоря, описанная схема метода припасовывания может быть применена и тогда, когда какой-либо участок описывается нелинейным дифференциальным уравнением при условии, что известно его общее решение.
Проиллюстрируем на простом примере использование метода припасовывания для определения переходного процесса и для определения периодического решения (автоколебаний). Дана система, схема которой изображена на рис. 3.1, а, нелинейная характеристика F(х) регулятора представлена на рис. 3.1, б. Уравнение объекта:
уравнение регулятора:
Общее уравнение замкнутой системы имеет вид
Определение переходного процесса. Представим себе примерно возможный качественный вид процесса
Рис. 8.6.
(рис. 3.2). Он разбивается на участки AB,BD и т. д., внутри которых в соответствии с нелинейной характеристикой функция F(x) принимает постоянные значения +с или -с. Изобразим отдельно участки АВ и BD (рис. 3.3), отсчитывая время t на каждом из них от нуля.
Рис. 8.7.
На участке АВ, согласно (3.1), уравнение системы
имеет первый интеграл в виде
а второй —
Рис. 8.8
Начальные
условия: t=0,
х
=b,
dx/dt=
.
По ним из (3.2) и (3.3) находим
На участке BD, согласно (3.1), имеем
Первый интеграл этого уравнения
а второй
Начальные условия для участка BD (в точке В) определяются на основании решения относительно точки В уравнения для предыдущего участка АВ. Из (3.2) находим
где С1 известно из (3.4), а величина tв определяется из уравнения (3.3) при условии хв=-b, т. е.
где С2 известно из (3.4). Отсюда определяем tв и полученное значение подставляем в формулу (3.7).
Таким образом, начальные условия для участка BD имеют вид
и, согласно (3.5), (3.6), получаем
На следующем за точкой D участке снова, как и на АВ, будет решаться уравнение
при этом произвольные постоянные определятся с учетом координат конца предыдущего участка BD и т. д.
Определение периодического решения (автоколебании). В этом случае расстояние AD по оси времени (рис. 3.2) является периодом автоколебаний. Вся кривая ABD после точки D должна повторяться в точности в том же виде. Вследствие нечетной симметрии характеристики (рис. 3.1, б) должна иметь место нечетная симметрия и полупериодов АВ н BD. Поэтому для определения периодического решения (автоколебаний) достаточно рассмотреть один полупериод — участок АВ.
Обозначим через Т полупериод искомых автоколебаний. В силу периодичности решения начало и конец участка АВ должны удовлетворять равенствам
Первое условие, согласно (3.2), принимает вид
откуда
Второе условие (3.8), согласно (3.3), запишется в виде
или
Подставив сюда выражение для С1 из (3.9), придем к
уравнению
с одной неизвестной величиной — полупериодом Т.
Трансцендентное уравнение (3.10) легко решается графически. Обозначим
Кривые z1 и z2, согласно этим равенствам, изображены на рис, 3.4. Решением уравнения (3.10) будет точка z1=z2
т. е. точка пересечения кривых 21 и 22 (рис. 8.9).
Рис. 8.9.
Отсюда находим полупериод Т автоколебаний. Частота автоколебаний
Амплитуда автоколебаний определится как хmax на участке АВ (рис. 3.2), т. е. из условия dx/dt == 0. При этом из (3.2)
где С1 определяется формулой (3.9), a tm - время t в точке максимума попа неизвестно. Из (3.11) с учетом (3.9) находим
откуда
Далее по формуле (3.3) определим амплитуду автоколебаний:
где C1 известно из (3.9). В результате формула
позволяет вычислить и амплитуду автоколебании.
ЛЕКЦИЯ 27.