- •1 Кинетика процессов утилизации субстрата, образования продуктов метаболизма и биомассы в культурах клеток
- •1.1 Идеальные реакторы для изучения кинетики клеточного роста
- •1.2 Идеальный реактор периодического действия
- •1.3 Идеальный проточный реактор с полным перемешиванием (прпп)
- •1.2 Кинетика сбалансированного роста
- •Рост филаментозных организмов
- •Структурированные модели кинетики клеточного роста
- •Компартментальные модели
- •Неструктурированные модели
- •Химически структурированные модели кинетики образования продуктов жизнедеятельности клеток
- •Кинетика образования продуктов жизнедеятельности филаментозными организмами
- •Кинетика тепловой гибели клеток и спор
- •Заключение
- •Вопросы для самоконтроля.
- •2 Проектирование и расчет биологических реакторов
- •1. Идеальные биореакторы
- •1.1. Реакторы периодического действия с добавлением субстрата
- •1.2. Реакции в прпп, катализируемые ферментами
- •1.3. Проточные реакторы с полным перемешиванием для культур клеток и пристеночный рост клеток
- •9.1.4. Идеальный трубчатый реактор полного вытеснения (трпв)
- •3. Реакторы с неидеальным перемешиванием
- •3.1. Время выравнивания концентраций в реакторах с перемешиванием
- •3.4. Взаимосвязь между перемешиванием и биологическими превращениями
- •4. Стерилизаторы
- •4.1. Периодическая стерилизация
- •4.2. Непрерывная стерилизация
- •5. Иммобилизованные биокатализаторы
- •5.1. Типы биокатализаторов на основе иммобилизованных клеток и их свойства
- •5.2. Применение биокатализаторов на основе иммобилизованных клеток
- •7. Технология микробиологических процессов
- •7.1. Подбор состава среды
- •7.2. Проектирование типичного асептического аэробного микробиологического процесса и его ведение
- •7.3. Биореакторы других типов
- •8. Особенности технологии процессов с участием растительных и животных клеток и соответствующих реакторов
- •8.1. Культивирование животных клеток; требования к среде
- •8.2. Промышленные реакторы для крупномасштабных процессов с участием животных клеток
- •8.3. Культивирование растительных клеток
- •1. Детекторы для определения физических и химических параметров среды и газов
- •1.1. Детекторы для определения физических свойств среды и газов
- •1.2. Детекторы для определения химического состава среды
- •1.3. Газовый анализ
- •2. Детекторы для непрерывного контроля характеристик популяции клеток
- •3. Автономные методы анализа
- •3.1. Определение свойств среды
- •3.2. Анализ состава популяции клеток
- •4. Эвм и интерфейсы
- •4.1. Основные элементы цифровых эвм
- •4.2. Интерфейсы и периферийные устройства эвм
- •4.3. Системы программного обеспечения
- •5. Анализ данных
- •5.1. Сглаживание и интерполяция данных
- •6. Управление процессами биохимической технологии
- •6.1. Непосредственное управление процессами
- •6.2. Каскадное управление метаболизмом
7. Технология микробиологических процессов
Для того чтобы получить некоторое представление о различных практических аспектах расчета и эксплуатации биореакторов, а также об осуществляемых в них процессах, рассмотрим ряд вопросов, связанных с промышленным применением микробиологических реакторов (которые по традиции часто называют ферментерами). Основное внимание мы будем уделять типичным материалам и методам, используемым в периодических процессах. В завершающей части этого раздела мы изучим некоторые альтернативные конструкции реакторов, разработанные для лабораторных и пилотных установок и в некоторых случаях успешно перенесенные на крупномасштабные промышленные установки.
Н
а
рис. 34 представлена схема важнейших
этапов типичного микробиологического,
процесса. Ранее мы уже упоминали о
подходах к выбору соответствующей
среды, способах ее стерилизации и
различных газах, применяющихся
в таких процессах. В следующем разделе
мы дадим дополнительные сведения о
подборе состава среды. Хотя в гл. 7 мы
уже обсуждали некоторые стороны влияния
природы посевного материала на ход
процесса, ряд проблем микробиологического
характера, связанных с введением
инокулята в среду, целесообразно
несколько детальнее рассмотреть и
здесь.
РИС. 34. Основные этапы и операции типичного аэробного микробиологического процесса.
7.1. Подбор состава среды
При подборе необходимого для определенного микробиологического процесса состава среды следует принимать во внимание множество факторов. Один из них связан со стехиометрией клеточного роста и количеством биомассы, которое мы хотели бы получить по завершении процесса. Основой любых расчетов здесь является простой материальный баланс, связанный с превращением в процессе клеточного роста низкомолекулярных органических и неорганических соединений, например глюкозы и аммиака, в биомассу. Для синтеза заданного количества биомассы (продукта процесса) в систему необходимо ввести достаточное количество питательных веществ (реагентов), взятых в определенном соотношении.
Очевидно, что для расчета требующегося количества различных субстратов необходимо знать элементный состав продукта (биомассы). В среде должны присутствовать и необходимые неорганические вещества (табл. 12).
Таблица 12. Элементный состав различных микроорганизмова
Если требования к элементному составу питательных веществ определены, то мы должны далее выбрать конкретные соединения, содержащие необходимые для клеточного роста элементы. Многие из применяемых в промышленности микроорганизмов являются хемогетеротрофами, потребности которых в энергии и углероде удовлетворяются простыми сахарами. В промышленности в качестве источников энергии и углерода часто применяют не очищенные сахара, а те или иные полупродукты, например свеклосахарную, тростниково-сахарную или кукурузную мелассу (содержащую от 50 до 70% ферментируемых сахароз). В некоторых случаях дешевым, но в то же время вполне удовлетворительным источником углерода для микроорганизмов могут служить отходы, например сыворотка или отходы консервного производства. Так, один из видов пищевых дрожжей получают в промышленном масштабе путем роста культуры на побочном продукте бумажного производства, сульфитно-спиртовой барде, содержащей всего лишь около 2% способных к ферментации гексоз и пентоз.
К числу доступных источников азота относятся аммиак, мочевина и нитрат. Вместе с тем микроорганизмы, продуцирующие протеолитические ферменты, могут усваивать азот и из разнообразных смесей, содержащих белки. Из потенциально ценных источников такого рода следует упомянуть фильтрат барды, зерно хлебных злаков, пептоны, мясные отходы, соевую муку, казеин, дрожжевые экстракты, муку из жмыха семян хлопчатника, арахисовый шрот, муку из жмыха льняного семени, кукурузный настой. В производстве пенициллина особенно важен кукурузный настой, представляющий собой концентрированный (50% твердых веществ) водный раствор, образующийся в качестве отхода при замачивании кукурузы в процессах получения крахмала, клейковины и других продуктов.
Для нормального роста и жизнедеятельности некоторых микроорганизмов необходимо наличие в питательной среде определенных аминокислот и факторов роста. Другие микроорганизмы, не столь требовательные к составу среды, тем не менее растут значительно быстрее в присутствии определенных (хотя и не обязательных) факторов роста и источников азота и углерода. Что касается промышленных процессов, то необходимые факторы роста обычно обеспечивает какой-либо из полупродуктов, входящих в состав среды, например кукурузный настой или дрожжевой автолизат. Кроме того, полупродукты часто являются источниками различных минеральных веществ, необходимых для нормальной жизнедеятельности клеток. Другие минеральные вещества добавляют в среду по мере необходимости.
Если основной целью процесса является синтез продукта жизнедеятельности микроорганизмов, то к среде для повышения выхода или для улучшения качества продукта процесса можно добавлять определенные вещества-предшественчики. Обычно молекула предшественника или его близкого производного включается в молекулу продукта. Так, например, в производстве новобиоцина, пенициллина G и витамина В12 в качестве предшественников используют бензойную кислоту, фенилуксусную кислоту и 5,6-диметилбензимидазол соответственно. Входящие в состав среды полупродукты также могут содержать полезные вещества-предшественники.
Более подробные сведения о подборе состава среды можно найти в приведенной в конце главы литературе. Теперь мы можем переключить наше внимание на другие аспекты технологии микробиологических процессов.
