Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
22,24-29, 31-40.docx
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
2.47 Mб
Скачать

Увеличение приемистости нагнетательных скважин

Технологии имеют варианты:

- Импульсно-кислотные обработки призабойной зоны пласта. Целью данного мероприятия является повышение проницаемости коллектора в прискважинной и удалённой зонах пласта. 

- Вибрационное воздействие на призабойную зону пласта в нескольких точках в интервале вскрытого пласта в среде ПАВ.

- Закачка в пласт химических композиций (кислоты или материалы, применяемые для выравнивания профиля притока) через вибратор с установкой пакера над интервалом перфорации. Продавливание жидкости воздействия в глубину пласта виброволновым способом. 

- Нагнетание жидкости вытеснения в пласт через вибратор. Цель данного воздействия увеличение фазовой проницаемости и увеличение охвата удаленных застойных зон пласта.

- На забой нагнетательной скважины спускается вибратор без дополнительного оборудования (пакер, якорь), скважина переводится в обычный режим нагнетания. Действие вибратора способствует снижению фазовой проницаемости, вовлечению в процесс дренирования застойных зон, образованию новых каналов фильтрации и увеличению проницаемости существующих.  

40. Гидравлический разрыв пласта в нагнетательных скважинах. Выравнивание профиля приемистости скважин.

Гидравлический разрыв пласта

Сущность этого процесса заключается в нагнетании в проницаемый пласт жидкости при давлении, под действием которого пласт расщепляется, либо по плоскостям напластования, либо вдоль естественных трещин. Для предупреждения смыкания трещин при снятии давления в них вместе с жидкостью закачивается крупный песок, сохраняющий проницаемость этих трещин, в тысячи раз превышающую проницаемость ненарушенного пласта.

Гидравлический разрыв проводится при давлениях, доходящих до 100 МПа, с большим расходом жидкости и при использовании сложной и многообразной техники.

На пористый пласт в вертикальном направлении действует сила, равная весу вышележащих пород. Средняя плотность горных осадочных пород обычно принимается равной 2300 кг/м3 .

Тогда давление горных пород будет равно

, (5.1)

Поскольку плотность воды 1000 кг/м3, то давление горных пород рг примерно в 2,3 раза больше гидростатического на той же глубине Н залегания пласта.

Можно предполагать, что за многие миллионы лет существования осадочных пород внутреннее напряжение породы по всем направлениям стало одинаковым и равным горному. Исходя из этого, следует, что для расслоения пласта, т. е. для образования в пласте горизонтальной трещины, необходимо внутри пористого пространства создать давление Рр, превышающее горное на величину временного сопротивления горных пород на разрыв, так как надо преодолеть силы сцепления частиц породы, т. е.

, (5.2)

Однако фактические давления разрыва часто оказываются меньше горного, т. е. в ПЗС создаются области разгрузки, в которых внутреннее напряжение меньше горного рг, определяемого соотношением (5.1)

В результате расщепление пласта, т. е. образование трещин, происходит при давлении меньшем, чем полное горное давление. Давление на забое скважины, при котором происходит гидравлический разрыв пласта (ГРП), называется давлением разрыва Pp.

Гидроразрыв пласта осуществляется следующим образом. Поскольку при ГРП в большинстве случаев (за исключением мелких скважин) возникают давления, превышающие допустимые для обсадных колонн, то предварительно в скважину спускают НКТ, способные выдержать это давление. Выше кровли пласта или пропластка, в котором намечается произвести разрыв, устанавливают пакер, изолирующий кольцевое пространство и колонну от давления, и устройство, предупреждающее его смещение и называемое якорем. По спущенным НКТ нагнетается сначала жидкость разрыва в таких объемах, чтобы получить на забое давление, достаточное для разрыва пласта. Момент разрыва на поверхности отмечается как резкое увеличение расхода жидкости (поглотительной способности скважины) при том же давлении на устье скважины или как резкое уменьшение давления на устье при том же расходе. Более объективным показателем, характеризующим момент ГРП, является коэффициент поглотительной способности

, (5.3)

Однако вследствие трудностей, связанных с непрерывным контролем за величиной Рс, а также вследствие того, что распределение давлений в пласте - процесс существенно неустановившийся, о моменте ГРП судят по условному коэффициенту k.

, (5.4)

Имеются приборы для снятия этой величины.

После разрыва пласта в скважину закачивают жидкость-песконоситель при давлениях, удерживающих образовавшиеся в пласте трещины в раскрытом состоянии. Это более вязкая жидкость, смешанная (180 - 350 кг песка на 1 м3 жидкости) с песком или другим наполнителем. В раскрытые трещины вводится песок на возможно большую глубину для предотвращения смыкания трещин при последующем снятии давления и переводе скважины в эксплуатацию. Жидкости-песконосители проталкивают в НКТ и в пласт продавочной жидкостью, в качестве которой используется любая маловязкая недефицитная жидкость.

Для проектирования процесса ГРП очень важно определить давление разрыва Pр, которое необходимо создать на забое скважины. На основании этих данных можно рекомендовать такие приближенные значения для давления разрыва:

для неглубоких скважин (до 1000 м)

для глубоких скважин (H > 1000 м)

Сопротивление горных пород на разрыв обычно мало и лежит в пределах σр = 1,5 - 3 МПа, поэтому оно не влияет существенно на Pp. Давление разрыва на забое Pр и давление на устье скважины Pу связаны очевидным соотношением

, (5.5)

При больших темпах закачки, соответствующих турбулентному течению, структурные свойства используемых жидкостей (с различными загустителями и химическими реагентами) обычно исчезают, и достаточно приближенно потери на трение для этих жидкостей можно определить по обычным формулам трубной гидравлики.

, (5.9)

1 - Qж = 800 кг/м3; 2 - 850 кг/м3; 3 - 900 кг/м3; 4 - 950 кг/м3; 5 - 1000 кг/м3 .

Выравнивание профиля приемистости

Работы по выравниванию профиля приемистости, иначе говоря, расхода вытесняющего агента, в нагнетательных скважинах напрвлены на регулирование процесса разработки нефтяных залежей.

Главные цели выравнивания- увеличение охвата пласта заводнением по толщине, перераспределение объемов закачки между пластами и пропластками при одновременном воздействии на них вытесняющим агентом.

Перед процессом проводят комплекс гидродинамических и геофизичеких исследований, в том числе с применением индикаторов.

Для ограничения либо полного отключения воздействия вытесняющего агента на отдельные интервалы пласта или пропластка по толщине, обработки проводят с применением временно изолирующих материалов. Это могут быть суспензии или эмульсии, осадкообразующие растворы, гелеобразующие или твердеющие материалы на органической или неорганической основе, в том числе водные растворы КМЦ, ПАА и тому подобные.

Во всех случаях должна быть предусмотрена возможность восстановления первичной, до обработки, приемистости обрабатываемого интервала пласта.

В случае необходимости проводят работы по восстановлению и повышению приемистости слабопроницаемых пропластов.

Перед проведением того или иного метода воздействия на ПЗС необходимо проведение комплексного исследования скважины при работе на стационарных режимах, при работе на нестационарном режиме и дебитометрические исследования. 

По результатам этих исследований строятся и обрабатываются: индикаторная диаграмма, КВД и профиль притока (приемистости). Кроме того, отбираются пробы продукции и определяются в лаборатории ее физико-химические характеристики. Все полученные данные служат основой для сравнения и сохраняются.

После проведения обработки ПЗС комплексное исследование повторяется, результаты обрабатываются и сохраняются. Первым технологически важным показателем является изменение дебита скважины ΔQ:

ΔQ=Q1-Q0 (2.1) 

Совершенно очевидно, что этот показатель не является единственным и представительным, т.к. дебит после обработки Q1 может быть получен и за счет снижения забойного давления; поэтому сравниваются коэффициенты продуктивности (приемистости) — если индикаторные диаграммы линейны; в противном случае сравниваются коэффициенты пропорциональности «k» и показатели степени «n» обобщенного уравнения притока (приемистости) или коэффициенты А и В. Увеличение коэффициента продуктивности (приемистости) или соответствующее изменение А:, и, А и В являются объективными показателями технологической эффективности проведенной обработки. Полученные в ходе обработки результатов гидродинамических исследований коэффициенты проницаемости, подвижности, гидропроводности и пьезопроводности призабойной зоны сравниваются между собой. Затем сравниваются результаты гидродинамических исследований на нестационарном режиме, дебитометрических исследований и свойств продукции.

Сравнение всех перечисленных показателей необходимо не столько для определения самой технологической эффективности, сколько для выявления, за счет какого показателя (либо совокупности показателей) системы получен положительный эффект. Это является абсолютно необходимым для новых нефтяных регионов при выборе самих методов управления продуктивностью и разработке технологии их реализации, а также для проверки адекватности выбранных методов реальным геолого-физическим свойствам объекта. Таким образом, метод обработки ПЗС является технологически эффективным, если после обработки увеличивается коэффициент продуктивности (приемистости), коэффициенты проницаемости, подвижности, гидропроводности, пьезопроводности, а также дебит скважины. 

К технологическому эффекту также относятся выравнивание профиля притока (приемистости) и снижение обводненности добываемой продукции. Вторым технологически важным показателем эффективности процесса является длительность положительного эффекта, например, дебита скважины и характер его снижения во времени. На Рисунке 2 приведены гипотетические данные о технологической эффективности воздействия на ПЗС.

К моменту начала работ по искусственному воздействию на ПЗС t0 скважина работала с дебитом Q(t)=Q0. После проведения обработки и освоения скважины (момент t1) дебит скважины увеличился до величины Q1>Q0 , т.е. технологический эффект положителен (с учетом соответствующих изменений коэффициента продуктивности, проницаемости и т.д.).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]