- •Основания электротехники и электроники
- •Общая электротехника и электроника электричество и магнетизм
- •Электростатика
- •Электростатические машины и лейденская банка
- •Постоянный ток
- •Источники постоянного тока (напряжения, эдс)
- •Магнитное поле Взаимодействие токов
- •Основные свойства магнитного поля:
- •Рамка с током в магнитном поле прямого тока
- •Рамка с током в поле постоянного магнита
- •Вектор магнитной индукции
- •Линии магнитной индукции
- •Правило буравчика.
- •Вихревая природа магнитного поля
- •Вихревая природа магнитного поля
- •Модуль вектора магнитной индукции
- •Единица измерения магнитной индукции - тесла.
- •Сила Ампера
- •Правило левой руки
- •Применения силы Ампера. Электроизмерительные приборы
- •Общие применения силы Ампера
- •Общие характеристики и практическая сторона использования громкоговорителей.
- •Шкала электромагнитных волн
- •1. Низкочастотные волны
- •2.Радиоволны
- •3. Инфракрасное и световое излучения
- •4. Рентгеновское и гамма излучение
- •Электромагнитная природа света
- •Общая электротехника и электроника. Основные определения
- •1.1. Основные пояснения и термины
- •1.2. Пассивные элементы схемы замещения
- •Активные элементы схемы замещения
- •1.4.Основные определения, относящиеся к схемам
- •1.5. Режимы работы электрических цепей
- •1.6. Основные законы электрических цепей
- •Словные графические и буквенные обозначения электрорадиоэлементов
- •Продолжение табл.1.1
- •Окончание табл. 1.1
- •Условные графические и буквенные обозначения электрорадиоэлементов в сша
- •1.8. Трехфазные цепи переменного тока
- •1. Основные определения
- •2. Соединение в звезду. Схема, определения
- •3. Соединение в треугольник. Схема, определения
- •4. Расчет трехфазной цепи, соединенной звездой
- •5. Мощность в трехфазных цепях
Постоянный ток
В 1780 Л. Гальвани (1737–1798) заметил, что заряд, подводимый от электростатической машины к лапке мертвой лягушки, заставляет лапку резко дергаться. Более того, лапки лягушки, закрепленной над железной пластинкой на латунной проволочке, введенной в ее спинной мозг, дергались всякий раз, как только касались пластинки. Гальвани правильно объяснил это тем, что электрические заряды, проходя по нервным волокнам, заставляют мышцы лягушки сокращаться. Это движение зарядов было названо гальваническим током.
После опытов, проводившихся Гальвани, Вольта (1745–1827) изобрел так называемый вольтов столб – гальваническую батарею из нескольких последовательно соединенных электрохимических элементов. Его батарея состояла из чередовавшихся медных и цинковых кружочков, разделенных влажной бумагой, и позволяла наблюдать те же явления, что и электростатическая машина.
Повторяя опыты Вольты, Никольсон и Карлейль в 1800 обнаружили, что посредством электрического тока можно нанести медь из раствора сульфата меди на медный проводник. У. Волластон (1766–1828) получил такие же результаты с помощью электростатической машины. М. Фарадей (1791–1867) показал в 1833, что масса элемента, получаемого с помощью электролиза, производимого данным количеством заряда, пропорциональна его атомной массе, деленной на валентность. Это положение ныне называют законом Фарадея для электролиза.
Поскольку электрический ток представляет собой перенос электрических зарядов, естественно определить единицу силы тока как заряд в кулонах, который ежесекундно проходит через данную площадку. Сила тока 1 Кл/с была названа ампером в честь А. Ампера (1775–1836), открывшего многие важные эффекты, связанные с действием электрического тока.
Источники постоянного тока (напряжения, эдс)
Магнитное поле Взаимодействие токов
Неподвижные электрические заряды создают вокруг себя электрическое поле. Движущиеся заряды создают, кроме того, магнитное поле. Его мы и начинаем изучать
Возьмём два гибких проводника, укрепим их вертикально, а затем присоединим нижними концами к полюсам источника тока. Притяжения или отталкивания проводников при этом не обнаружится, что соответствует рисунку 1. Если другие концы проводников замкнуть проволокой так, чтобы в проводниках возникли токи противоположного направления, то проводники начнут отталкиваться друг от друга, что видно на рисунке 2 (наведи стрелку мыши на рисунок). В случае токов одного направления проводники взаимно притягиваются (см рисунок 3). Взаимодействия между проводниками с током, т.е. взаимодействия между движущимися электрическими зарядами, называют магнитными. Силы, с которыми проводники с током действуют друг на друга, называют магнитными силами.
Магнитное поле. |
||
|
Согласно теории близкодействия ток в одном из проводников не может непосредственно действовать на ток в другом проводнике. Подобно тому как в пространстве, окружающем неподвижные электрические заряды, возникает электрическое поле, в пространстве, окружающем токи, возникает поле, называемое магнитным. Электрический ток в одном из проводников создаёт вокруг себя магнитное поле, которое действует на ток в другом проводнике. А поле, созданное электрическим током второго проводника, действует на первый. МАГНИТНОЕ ПОЛЕ представляет собой особую форму материи, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами. |
|
Теперь перечислим устанавливаемые экспериментально

Рисунок
4.
Забегая вперёд, скажу, что таков
вид магнитных силовых линий, возникающих
вокруг проводника с током.
Рисунок
5.
Опыт Эрстеда, показывающий, как
выстраиваются магнитные стрелки
вблизи провода с током.