
- •Основания электротехники и электроники
- •Общая электротехника и электроника электричество и магнетизм
- •Электростатика
- •Электростатические машины и лейденская банка
- •Постоянный ток
- •Источники постоянного тока (напряжения, эдс)
- •Магнитное поле Взаимодействие токов
- •Основные свойства магнитного поля:
- •Рамка с током в магнитном поле прямого тока
- •Рамка с током в поле постоянного магнита
- •Вектор магнитной индукции
- •Линии магнитной индукции
- •Правило буравчика.
- •Вихревая природа магнитного поля
- •Вихревая природа магнитного поля
- •Модуль вектора магнитной индукции
- •Единица измерения магнитной индукции - тесла.
- •Сила Ампера
- •Правило левой руки
- •Применения силы Ампера. Электроизмерительные приборы
- •Общие применения силы Ампера
- •Общие характеристики и практическая сторона использования громкоговорителей.
- •Шкала электромагнитных волн
- •1. Низкочастотные волны
- •2.Радиоволны
- •3. Инфракрасное и световое излучения
- •4. Рентгеновское и гамма излучение
- •Электромагнитная природа света
- •Общая электротехника и электроника. Основные определения
- •1.1. Основные пояснения и термины
- •1.2. Пассивные элементы схемы замещения
- •Активные элементы схемы замещения
- •1.4.Основные определения, относящиеся к схемам
- •1.5. Режимы работы электрических цепей
- •1.6. Основные законы электрических цепей
- •Словные графические и буквенные обозначения электрорадиоэлементов
- •Продолжение табл.1.1
- •Окончание табл. 1.1
- •Условные графические и буквенные обозначения электрорадиоэлементов в сша
- •1.8. Трехфазные цепи переменного тока
- •1. Основные определения
- •2. Соединение в звезду. Схема, определения
- •3. Соединение в треугольник. Схема, определения
- •4. Расчет трехфазной цепи, соединенной звездой
- •5. Мощность в трехфазных цепях
4. Рентгеновское и гамма излучение
В области рентгеновского и гамма излучения на первый план выступают квантовые свойства излучения.
Рентгеновское излучение возникает при торможении быстрых заряженных частиц (электронов, протонов и пр.), а также в результате процессов, происходящих внутри электронных оболочек атомов.
Гамма излучение является следствием
явлений, происходящих внутри атомных
ядер, а также в результате ядерных
реакций. Граница между рентгеновским
и гамма излучением определяются условно
по величине кванта энергии
,
соответствующего данной частоте
излучения.
Рентгеновское излучение составляют электромагнитные волны с длиной от50 нм до 10-3нм, что соответствует энергии квантов от 20эв до 1Мэв.
Гамма излучение составляют электромагнитные волны с длиной волны меньше 10-2нм, что соответствует энергии квантов больше 0.1Мэв.
Электромагнитная природа света
Свет представляет собой видимый участок спектра электромагнитных волн, длины волн которых занимают интервал от 0.4мкм до 0.76мкм. Каждой спектральной составляющей оптического излучения может быть поставлен в соответствие определённый цвет. Окраска спектральных составляющих оптического излучения определяется их длиной волны. Цвет излучения изменяется по мере уменьшения его длины волны следующим образом: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый.
Красный свет, соответствующий наибольшей длине волны, определяет красную границу спектра. Фиолетовый свет - соответствует фиолетовой границе.
Естественный свет не окрашен и представляет суперпозицию электромагнитных волн из всего видимого спектра. Естественный свет появляется в результате испускания электромагнитных волн возбужденными атомами. Характер возбуждения может быть различным: тепловой, химический, электромагнитный и др. В результате возбуждения атомы излучают хаотическим образом электромагнитные волны примерно в течении 10-8сек. Поскольку энергетический спектр возбуждения атомов достаточно широкий, то излучаются электромагнитные волны из всего видимого спектра, начальная фаза, направление и поляризация которых имеет случайный характер . По этой причине естественный свет не поляризован. Это означает, что "плотность" спектральных составляющих электромагнитные волны естественного света, имеющих взаимно перпендикулярные поляризации одинаково.
Гармонические электромагнитные волны
светового диапазона называются
монохроматическими. Для световой
монохроматической волны одной из главных
характеристик является интенсивность.
Интенсивность световой волны
представляет собой среднее значение
величины плотности потока энергии
(1.25) переносимого волной:
|
(1.42) |
где
-
вектор Пойнтинга.
Расчет интенсивности световой, плоской,
монохроматической волны с амплитудой
электрического поля
в
однородной среде с диэлектрической
и
магнитной
проницаемостями
по формуле (1.35) с учетом (1.30) и (1.32) дает
:
|
(1.43) |
где
-
коэффициент преломления среды;
-
волновое сопротивление эфира.
Традиционно оптические явления рассматриваются с помощью лучей. Описание оптических явлений с помощью лучей называется геометрооптическим. Правила нахождения траекторий лучей, разработанные в геометрической оптике, широко используются на практике для анализа оптических явлений и при построении различных оптических приборов.
Дадим определение луча, исходя из
электромагнитного представления
световых волн. Прежде всего, лучи - это
линии, вдоль которых распространяются
электромагнитные волны. По этой причине
луч - это линия, в каждой точке которой
усредненный вектор Пойнтинга
электромагнитной
волны направлен по касательной к этой
линии.
В однородных изотропных средах направление
среднего вектора Пойнтинга
совпадает
с нормалью к волновой поверхности
(эквифазной поверхности), т.е. вдоль
волнового вектора
.
Таким образом, в однородных изотропных средах лучи перпендикулярны соответствующему волновому фронту электромагнитной волны.
Для примера рассмотрим лучи, испускаемые точечным монохроматическим источником света. С точки зрения геометрической оптики из точки источника исходит множество лучей в радиальном направлении. С позиции электромагнитной сущности света из точки источника распространяется сферическая электромагнитная волна. На достаточно большом расстоянии от источника кривизной волнового фронта можно пренебречь, считая локально сферическую волну плоской. Разбивая поверхность волнового фронта на большое количество локально плоских участков, можно через центр каждого участка провести нормаль, вдоль которого распространяется плоская волна, т.е. в геометрооптической интерпретации луч. Таким образом, оба подхода дают одинаковое описание рассмотренного примера.
Основная задача геометрической оптики состоит в нахождении направления луча (траектории). Уравнение траектории находится после решения вариационной задачи нахождения минимума т.н. действия на искомых траекториях. Не вдаваясь в подробности строгой формулировки и решения указанной задачи, можно полагать, что лучи представляют собой траектории с наименьшей суммарной оптической длиной. Данное утверждение является следствием принципа Ферма.
Вариационный подход определения
траектории лучей может быть применен
и к неоднородным средам, т.е. таким
средам, у которых показатель преломления
является
функция координат точек среды. Если
описать функцией
форму
поверхности волнового фронта в
неоднородной среде, то её можно найти
исходя из решения уравнения в частных
производных, известного как уравнение
эйконала, а в аналитической механике
как уравнение Гамильтона - Якоби:
Таким образом, математическую основу геометрооптического приближения электромагнитной теории составляют различные методы определения полей электромагнитных волн на лучах, исходя из уравнения эйконала или каким - либо другим способом. Геометрооптическое приближение широко используется на практике в радиоэлектронике для расчета т.н. квазиоптических систем.
В заключение заметим, что возможность описать свет одновременно и с волновых позиций путем решения уравнений Максвелла и с помощью лучей, направление которых определяется из уравнений Гамильтона - Якоби, описывающих движение частиц, является одним из проявлений кажущегося дуализма света, приведшего, как известно, к формулировке логически противоречивых принципов квантовой механики.
На самом деле никакого дуализма в природе электромагнитных волн нет. Как показал Макс Планк в 1900 году в своей классической работе "О нормальном спектре излучения", электромагнитные волны представляют собой отдельные квантованные колебания частотой v и энергией E=hv, где h =const, в эфире. Последний есть сверхтекучая среда, имеющая стабильное свойство разрывности мерой h - постоянная Планка. При воздействии на эфир энергией, превышающей hv во время излучения происходит образование квантованного "вихря". Точно такое же явление наблюдается во всех сверхтекучих средах и образование в них фононов - квантов звукового излучения.
За "copy-and-paste" совмещение открытия Макса Планка 1900 года к открытому еще в 1887 году Генрихом Герцем фотоэффекта, в 1921 году Нобелевский комитет присудил премию Альберту Эйнштейну
1) Октавой по определению называется диапазон частот между произвольной частотой w и её второй гармоникой, равной 2w.
2) h=6.6310-34 Джсек - постоянная Планка.