Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
[ИПС] Экзамен.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
39.3 Кб
Скачать
  1. Нечеткие множества и нечеткие выводы. Лингвистические переменные. Функции принадлежности. Алгебра нечетких множеств.

Лингвистическая переменная — в теории нечётких множеств, переменная, которая может принимать значения фраз из естественного или искусственного языка. Например, лингвистическая переменная «скорость» может иметь значения «высокая», «средняя», «очень низкая» и т. д. Фразы, значение которых принимает переменная, в свою очередь являются именами нечетких переменных и описываются нечетким множеством.

Функция принадлежности нечёткого множества — обобщение индикаторной (или характеристической) функции классического множества. В нечёткой логике она представляет степень принадлежности каждого члена пространства рассуждения к данному нечёткому множеству.

  1. Понятие экспертной системы (эс). Структура и классификация эс. Основы методологии экспертных систем. Архитектура экспертных систем.

Экспертная система (ЭС) - это компьютерная система, которая моделирует рассуждения человека-эксперта в некоторой определенной области и использует для этого базу знаний, содержащую факты и правила об этой области, специальную процедуру логического вывода.

Структура

  • Интерфейс пользователя

  • Пользователь

  • Интеллектуальный редактор базы знаний

  • Эксперт

  • Инженер по знаниям

  • Рабочая (оперативная) память

  • База знаний

  • Решатель (механизм вывода)

  • Подсистема объяснений

Классификация экспертных систем

Для классификации ЭС можно использовать различные критерии.

1. По назначению ЭС можно условно разделить на консультационные (информационные), исследовательские и управляющие. Консультационные ЭС предназначены для получения квалифицированных ответов; исследовательские - для помощи пользователю квалифицированно решать научные задачи; управляющие - для автоматизации управления процессами в реальном масштабе времени.

2. По сложности и объему базы знаний - неглубокие и глубокие.

Неглубокие (простые) ЭС имеют относительно малые БЗ. Доказательства их заключений обычно коротки, большинство выводов являются прямыми следствиями информации, хранимой в базе знаний. Такие ЭС в основном предназначены для решения относительно простых задач типа ответов на запросы по требуемой информации.

Глубокие ЭС делают свои выводы обязательно из моделей происходящих процессов, хранящихся в базах знаний. Сама модель процесса представляет собой набор правил, предназначенных для объяснения большого количества эмпирических данных. В глубоких ЭС доказательства выводов значительно длиннее, основываются на знаниях, выведенных из моделей.

3. По области применения ЭС делятся следующие классы.

1) Диагностика.

2) Прогнозирование.

3) Планирование и проектирование..

4) Интерпретация. Интерпретирующие системы обладают способностью получать определенные заключения на основе результатов наблюдения (например, местоположение и тип судов в океане по данным акустических систем слежения).

5) Контроль и управлени.

6) Обучение.

4. По связям с реальным миром.

1) Статические ЭС разрабатываются в предметных областях, в которых БЗ и интерпретируемые данные не меняются во времени. Они стабильны. Например, диагностика неисправностей в автомобиле.

2) Квазидинамические ЭС интерпретируют ситуацию, которая меняется с некоторым фиксированным интервалом времени. Например, микробиологические ЭС, в которых снимаются лабораторные изменения с технологического процесса один раз в 4 -5 часов и анализируется динамика полученных показателей по отношению к предыдущему измерению.

3) Динамические ЭС работают в сопряжении с датчиками объектов в режиме реального времени с непрерывной интерпретацие поступающих в систему данных. Например, управление гибкими производственными комплексами, мониторинг в реанимационных палатах.

На этапе идентификации определяются задачи, подлежащие решению, выявляются цели разработки, ресурсы, эксперты и категории пользователей. На этапе концептуализации проводится содержательный анализ проблемной области, выявляются используемые понятия и их взаимосвязи, определяются методы решения задач. На этапе формализации определяются способы представления всех видов знаний, формализуются основные понятия, определяются способы интерпретации знаний, моделируется работа системы, оценивается адекватность целям системы зафиксированных понятий, методов решения, средств представления и манипулирования знаниями. На этапе выполнения осуществляется наполнение экспертом базы знаний системы. Процесс приобретения знаний разделяют на получение знаний от эксперта, организацию знаний, обеспечивающую эффективную работу системы, и представление знаний в виде, понятном экспертной системе. Эвристический характер знаний приводит к тому, что процесс их приобретения является весьма трудоемким. На данном этапе создаются прототипы экспертной системы, которые решают задачи предметной области. Затем по результатам этапов тестирования и опытной эксплуатации создается конечный продукт, пригодный для промышленного использования. Разработка прототипа состоит в программировании его компонентов или выборе их из имеющихся интеллектуальных систем и наполнении базой знаний. На этапе тестирования эксперт в интерактивном режиме, используя диалоговые средства, проверяет адекватность экспертной системы. Процесс тестирования продолжается до тех пор, пока эксперт не даст окончательной оценки о готовности системы к эксплуатации. На этапе опытной эксплуатации проверяется пригодность экспертной системы для конечных пользователей.