Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
24,04.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.42 Mб
Скачать

Вступ

В багатьох математичних і фізичних додатках теорії інтегрування недостатньо інтегрувати функції по всьому простору або по його вимірним підмножинам; необхідно знаходити інтеграли вздовж шляхів (криволінійні інтеграли) і по частинам поверхонь. Так, наприклад, щоб обрахувати роботу при русі точки в силовому полі, необхідно «просумувати силу вздовж лінії», тобто розглянути деякий криволінійний інтеграл вздовж пройденого цією точкою шляху. Подібним чином, кількість електроенергії, що протікає через криву поверхню, виражається поверхневим інтегралом і т. д. Спроба звести ці фізичні і аналогічні математичні питання в систему понять, якими можна було б легко оперувати, приводить до визначення поняття зовнішньої (або альтернованої) диференціальної форми. Об’єкти, які ми інтегруємо по р-вимірній частині поверхні в Rn, є диференціальними формами порядку р, а не функціями. Векторний аналіз з його бачаточисленними диференціальними операторами (grad f, rot a, div a) і інтегральними формулами є навряд чи доцільним, але часто дуже заплутаним перекладом обчислення зовнішніх диференціальних форм.

Отже, мета роботи: введення та опис поняття диференціальної форми, основних операцій над ними; показ доцільності використання диференціальних форм в задачах, що зводяться до обчислення інтегралів від функції багатьох змінних та обчислення параметрів векторних полів, ілюстрація переваги використання алгебри диференціальних форм перед методами векторного аналізу.

Завдання:

  1. Описати основні об’єкти векторного аналізу

  2. Описати алгебру диференціальних форм

  3. Встановити зв’язок між ними

1. Грасманові добутки векторного простору

Літерою Т ми будемо позначати деякий дійсний векторний простір, а символом Т* — простір, спряжений з Т, тобто векторний простір лінійних форм в просторі Т. Символом Тр ми будемо позначати р-кратний декартовий добуток простору Т на себе, тобто множину всіх р-наборів , елементів простору Т.

Означення 1.1. Р-лінійною формою (де р 1) в просторі Т називається відображення

,

що має сідуючі властивості:

  1. для кожного , що задовольняє умову ,

  1. при і

0-лінійною формою називається дійсне число.

Таким чином, р-лінійна форма є функція від р векторів, лінійна відносно кожної окремої змінної; 1-лінійні форми просто являються елементами спряженого простору Т*. Точно так , як і у випадку 1-лінійних форм, можна показати, що р-лінійні форми створюють дійсний векторний простір. Число р називається порядком форми , а називається полілінійною формою порядку р.

Іноді вимагаються більш загальні поняття:

Означення 1.2. (р, q)-лінійною формою в просторі Т (де р і q 1) називається відоброження

лінійне відносно кожної окремої змінної; р-форми в просторі Т називають також (р, 0)-лінійними формами, а q-форми в просторі Т* називаються (0, q)-лінійними формами в просторі Т.

Таким чином, при а, і маємо

Векторний простір, створений (р,q)-формами, ми будемо позначати символом .

В подальшому нам будуть майже всюди зустрічатися р-форми.

Означення 1.3. р-лінійна форма називається зовнішньою р-формою, якщо для кожного , що задовольняє умову

Кожна 1-лінійна форма (при р=1) є зовнішньою. Зовнішніми 0-формами ми за означенням вважаємо дійсні числа. Замість «зовнішня» часто говорять «альтернована» або «кососиметрична»; всі ці терміни означають одне і теж.

Теорема 1.1. Для кожного р зовнішні р-форми створюють дійсний векторний простір Ер, що називається р-кратним грасмановим добутком над простором Т. При цьому і .

Насправді, разом з формами і і форма є зовнішньою; якщо і , то .

З означення випливає, що:

  1. Якщо і , то

  1. Якщо при , то

Щоб встановити подальші властивості зовнішніх р-форм, ми введемо символ Кронекера.

Означення 1.4. Для будь-яких двох натуральних чисел i покладемо:

Якщо і — який-небудь р-набір натуральних чисел, то покладемо

Функція називається символом Кронекера. Крім того, для кожного натурального числа і покладемо

Таким чином, символ Кронекера приймає тільки значення -1, 0 або +1. Очевидно, = 0 в тому випадку, якщо два різних аргумента, наприклад і при , співпадають. Справедлива така властивість

Властивість 1.

З цієї властивості випливає проста інтерпритація символа Кронекера. Тобто, якщо серед чисел , які ми вважаємо попарно різними, будемо створювати транспозиції до тих пір, поки числа не будуть записаними в природньому порядку, наприклад , то при кожній окремій транспозиції знак символа зміниться. Якщо а — число всіх проведених транспозицій, то

і, значить, оскільки 1, .

Р-набором ( ) визначається не саме число а, але, як показує це припущення, число , тобто «парність» числа а.

Символ Кронекера слугує для того, щоб «альтернувати» довільну р-лінійну форму. Як відомо, множину з р об’єктів можна упорядковувати рівно р! різними способами. Таким чином, кожному р-набору векторів можна, міняючи місцями вектори , поставити в відповідність р! елементів . Розуміється, всі ці елементи відрізняються один від одного лише в тому випадку, якщо при .

Означення 1.5. Нехай — деяка р-лінійна форма. Під альтернованою частиною форми ми розуміємо р-лінійну форму [ ], що означається формулою

Якщо р=0, то ми покладаємо [ ]= .

Наприклад, при р=2

де і

У випадку р=1, природньо [ ]= . Те, що форма [ ] є р-лінійною, легко перевіряється. Далі, має місце

Тведрження 2. Якщо — зовнішня р-форма, то =[ ].

Твердження 3. Форма [ ] являється кососиметричною.

Твердження 4. [[ ]] = [ ].

Має місце тривіальне твердження.

Твердження 5. Якщо і — дві р-лінійні форми, то Для кожного має місце рівність .

Тепер ми визначимо добуток полілінійих форм. Нехай — деяка р-лінійна форма, а — деяка q-линейная форма. Покладемо

де і — вектори з Т. Ця формула визначає (р+q)-лінійне відображення

яке ми будемо називати добутком форм і . Відразу перевіряємо слідуючі правила:

  1. де .

Твердження 6. .

Означення 1.6 Нехай — зовнішня р-форма и — зовнішня q-форма. Зовнішнім добутком форм і називається форма

.

Таким чином, є зовнішньою (р+q)-формою. Зовнішній добуток не є добутком в Ер, бо при р>0 добуток двох р-форм не лежить в Ер. Зовнішній добуток відображає декартовий добуток в просторі .

Теорема 1.2. а) де , ;

б) де , ;

в) де , ;

г) де , , .

Як видно вже з тривіальних прикладів, зовнішній добуток не комутативний. Що виникає при перестановці співмножників, найлегше всього вияснити, скориставшись базисом простору Т.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]