Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
po_agrokhimii.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
2.52 Mб
Скачать

Пассивный транспорт питательных веществ через плазмолемму.

Существует 2 механизма перемещения веществ через плазмолемму:

  1. пассивный транспорт

  2. активный транспорт

При пассивном энергия клетки не расходуется, вещества перемещаются по градиенту концентрации (диффузия и осмос) или электрического потенциала (электрофорез). Т.к. элементы питания поступают в клетку в виде ионов, направление их движения определяется совместным действием указанных выше градиентов, составляющих электрохимический градиент.

Проникновение ионов в клетку при пассивном транспорте происходит через гидрофильные поры.

Активный транспорт питательных веществ через плазмолемму.

Активный транспорт – это перемещение питательных веществ против электрохимического градиента требующее больших затрат метаболической энергии, т.е. активный транспорт работает в том случае когда электрохимический градиент не работает на клетку.

Теория переносчиков объясняет механизм активного транспорта действием специфических белков (переносчиков), образующих комплекс с соответствующим ионом и осуществляющим перенос его через мембрану. Например, белковые глобулы диаметром, превышающим толщину плазмолеммы могут обеспечивать транспорт ионов, вращаясь вокруг своей оси. Челночный механизм переноса предполагает движение переносчика растворенного в фосфолипидном слое от наружной стороны к внутренней и обратно. При эстафетном механизме ион передается от одной молекулы белка к другой. Предполагается, что образование в плазмолемме гидрофильных пор также проходит с участием белков переносчиков, молекулы которых формируют стенки каналов и обеспечивают избирательность транспорта ионов.

В результате работы переносчиков ионы интенсивно накапливаются или выкачиваются клеткой, поэтому механизмы активного транспорта называют ионными насосами (помпами).

Особое значение имеет протонная помпа – белковый комплекс осуществляющий выброс ионов Н+ из клетки за счет энергии АТФ. Таким образом на мембране генерируется электрохимический градиент создающий условия для работы других переносчиков. Градиент обеспечивает движение ионов элементов питания – антипорт.

Концентрационный градиент протонов вызывает их обратное поступление, при этом переносчик обеспечивает возврат Н+ и параллельно может переносить анионы (симпорт) или молекулы органических веществ (котранспорт).

Поступление питательных веществ в клетку может происходить путем пиноцитоза. Участок мембраны на котором адсорбируются капли жидкости втягивается внутрь и образуется пиноцетарный пузырек, разрушающийся лизосомами. Содержащиеся в нем вещества попадают в цитоплазму. Процесс пиноцетоза протекает только при участии АТФ.

11. Влияние внешних факторов на поступление элементов питания в клетки корней растений: температура, влажность, концентрация почвенного раствора, реакция среды.

Влияние концентрации почвенного раствора и соотношение макро- и микроэлементов в питательной среде на поступление питательных веществ в растение.

  1. Концентрация почвенного раствора.

Корни растения могут использовать элементы питания из сильно разбавленных растворов, однако при очень низких концентрациях растения могут страдать от недостатка питательных веществ.

Повышение концентрации до определенного предела (2-3 г/л) вызывает пропорциональный рост интенсивности поглощения элементов питания, при избыточно высоких концентрациях растения угнетаются, т.к. осмотическое давление раствора затрудняет поступление воды.

Оптимальная концентрация почвенного раствора при которой наиболее активно поглощаются питательные вещества изменяется в зависимости от вида растения и возраста.

Так хуже всего переносят повышенные концентрации: лен, люпин, морковь и огурец. Особенно чувствительны молодые растения.

  1. Соотношение макро и микроэлементов.

Раствор в котором необходимые растению элементы питания находятся в оптимальной для данной фазы развития концентрации и соотношении называется физиологически уравновешенным. Одновременное присутствие в растворе нескольких видов катионов и анионов благодаря антагонизму создает более или менее благоприятные условия для развития растения. В то время как односолевой (неуравновешенный) раствор той же концентрации оказывает резко отрицательное воздействие.

Антагонизм это взаимное торможение одноименно заряженных ионов при поступлении их в растение. Пример: Са и К, Са и Мg, К и NH4, Са и Н.

Антагонизм анионов менее выражен. Отрицательную роль антагонизм может играть в неуравновешенных растворах, т.е. при резком преобладании того или иного иона.

Например известкование почв вызывает резкое повышение концентрации Са в итоге может снизится поступление К и Мg.

Обратный антагонизму процесс – синергизм. Это когда ионы ускоряют поступление друг друга в растение. Синергизм чаще всего рассматривается как взаимоотношение противоположно заряженных ионов. Например поступление ионов NO3 стимулирует поступление Са. Вместе с тем взаимодействия между ионами имеет более сложную природу. Одни и те же ионы могут действовать как положительно так и отрицательно на поглощение других ионов. Направленность действия зависит от содержания в среде того или иного элемента питания.

Например: повышение концентрации элемента находящегося в минимуме до оптимального уровня активизирует процессы обмена веществ в растении, как следствие стимулирует поступление других элементов (синергизм).

При дальнейшем повышении концентрации того же элемента в растворе нарушается соотношение элементов питания. Синергические отношения могут перейти в антогонистические т.к. избыток элемента будет затруднять поступление др. элементов в растение.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]