- •Категории потребителей ээ.
- •Категории потребителей ээ по степени надежности электроснабжения в соответствии с требованиями пуэ.
- •Графики электрических нагрузок потребителей.
- •Современные и перспективные источники ээ.
- •Принципиальная технологическая схема Теплоэлектроцентра́ли (тэц):
- •Принципиальная технологическая схема Гидроэлектростанции (гэс)
Современные и перспективные источники ээ.
Электрическую энергию (ЭЭ) производят на электрических станциях с помощью электрических генераторов, вращаемых первичными двигателями – паровыми машинами или турбинами, гидравлическими турбинами, двигателями внутреннего сгорания и т. д.
Электрические станции разделяют по особенностям технологического процесса преобразования энергии и виду используемого энергетического ресурса. Более 80 % ЭЭ вырабатывается тепловыми электростанциями на органическом топливе, остальная – гидравлическими и атомными электростанциями. Использование для производства других источников энергии (солнце, ветер, морские приливы, геотермальные воды и др.) пока ограничено только опытными или опытно-промышленными установками.
В России (в том числе РТ) и большинстве других стран для производства и распределения ЭЭ принят трехфазный переменный ток частотой 50 Гц, что объясняется большей экономичностью и эффективностью ее передачи на значительные расстояния, а также использованием в качестве электропровода простых и надежных асинхронных электродвигателей.
Выгодно сооружать крупные электростанции (сотни тысяч кВт), так как себестоимость ЭЭ на них значительно ниже, чем на мелких. Наибольший эффект дает сооружение электрических станций вблизи потребителей. Однако источники энергии (месторождения нефти, газа, угля, гидроэнергия) находятся в отдалении от городов, населенных пунктов. Перевозка топлива на железнодорожном, водном и других видах транспорта чрезвычайно дорога, поэтому строительство электростанций ведется, как правило, вблизи источников энергоресурсов, а передача ЭЭ осуществляется по линиям электропередачи (ЛЭП) высокого напряжения.
По типу первичного двигателя тепловые электростанции подразделяют на паротурбинные, газотурбинные и дизельные. В последнее время все чаще применяют комбинированные схемы с паротурбинными и газотурбинными двигателями, называемые парогазовыми энергоустановками. Дизельные электростанции используют в качестве автономных источников для резервирования электроснабжения особо ответственных потребителей, а также для производства электроэнергии в зонах, где отсутствует централизованное электроснабжение от энергосистемы.
На тепловых электростанциях в качестве топлива применяют уголь, торф, горючие сланцы, газ, мазут. Энергия сжигаемого топлива преобразуется в паровом котле в энергию водяного пара, приводящего во вращение турбоагрегат (паровую турбину, соединенную с генератором).
Атомные электростанции – это тепловые электростанции, которые используют тепловую энергию ядерных реакций. Одним из основных элементов атомных электростанций является реактор, в котором имеются замедлитель нейтронов и теплоноситель.
Гидроэлектростанции предназначены для выработки ЭЭ и сооружаются часто в составе гидротехнических комплексов, одновременно решающих задачи улучшения судоходства, ирригации, водоснабжения, защиты от паводков и др. На гидроэлектростанциях вырабатывается около 15 % всей ЭЭ, производство которой осуществляется за счет энергии падающей воды.
Поиски альтернативного горючего ведутся во многих странах, каждая из которых использует наиболее доступное и дешевое сырье. Бразильцы, например, добавляют в бензин этанол, произведенный из сахарного тростника, японцы — полученный из риса, североамериканцы — из кукурузы. А вот в Саудовской Аравии ведутся опыты по созданию автомобильного топлива из фиников. Среди других альтернативных источников энергии пристальное внимание, как и прежде, уделяется солнечной энергии. Развитие мобильных технологий заставляет разработчиков уделять больше внимания питанию портативных устройств. Сегодня в этом сегменте рынка практически безраздельно господствуют химические источники тока — гальванические элементы и аккумуляторы.
Энергетическая система.
Энергетические Системы - Системы Электроэнергии, компоненты, которые преобразовывают другие типы энергии в электрическую энергию и передают эту энергию потребителю.
Структура энергетической системы.
Структуры всех энергетических систем аналогичны.
Технико - экономические преимущества энергосистемы.
1. Возможность увеличения единичной мощности генераторов и электростанции. Это снижает стоимость 1 кВт установленной мощности, позволяет резко повысить производительность электромашиностроительных заводов при тех же производственных площадях и трудозатратах.
2. Значительное повышение надежности электроснабжения потребителей.
3. Повышение экономичности работы различных типов электростанций, при этом обеспечиваются наиболее эффективное использование мощности ГЭС и более экономичные режимы работы ТЭС;
4. Снижение необходимой резервной мощности на электростанциях.
Графики электрических нагрузок энергосистемы.
График построен для 41-часовой рабочей
недели в условиях восьмичасового
рабочего и двух выходных дней. При этом
характерно резкое
изменение нагрузки
в субботние (до 40%) и особенно в воскресные
дни (до 20%). Характерно также некоторое
снижение промышленной нагрузки.
Система диспетчерского управления энергосистемой.
На всех уровнях Энергосистемы обеспечивается круглосуточное диспетчерское управление. Дежурные диспетчеры следят за соблюдением режима и соответствием его заданным планам-графикам и осуществляют их оперативную корректировку при изменении условий работы энергосистем. Диспетчеры руководят также работой по восстановлению нормального режима энергосистем при авариях. Диспетчерские пункты оснащены комплексом средств связи, телемеханики, автоматики и вычислительной техники. Схема и режим основной электрической сети и энергетических объектов отображаются на мнемонических схемах диспетчерского щита и на пультах управления, оснащенных устройствами телеизмерений и телесигнализации.
Рабочее заземление электрических сетей.
Основные понятия и определения в соответствии с требованиями ПУЭ.
Защитное заземление - это соединение корпусов электрооборудования, защитных оболочек электропроводки с проводником, имеющим электрический потенциал земли.
Согласно ГОСТ 12.1.030-81 и ПУЭ защитное заземление и зануление требуется выполнять при напряжении 380 В и выше переменного тока и от 110 до 440 В постоянного тока при работах в условиях повышенной опасности и особо опасных (ГОСТ 12.1.013-78). Величины сопротивления защитного заземления установлены ПУЭ. Электроустановки от 110 до 750кВ должны иметь защитное заземление сопротивлением не более 0,5 Ома, а на территории, занятой оборудованием, должно быть выполнено выравнивание потенциалов. В электрических установках выше 1000В в сети с изолированной нейтралью сопротивление заземлителя должно быть: Rз = 250/Jз , где Jз - расчетная сила тока замыкания на землю, А. Если используется одновременно электрическая установка до 1000 В, то: Rз = 125/Jз
Нейтралями электроустановок называют общие точки трехфазных обмоток генераторов или трансформаторов, соединенных в звезду.
В зависимости от режима нейтрали электрические сети разделяют на четыре группы:
1)сети с незаземленными (изолированными) нейтралями;
2) сети с резонансно-заземленными (компенсированными) нейтралями;
3) сети с эффективно заземленными нейтралями;
4) сети с глухозаземленными нейтралями.
Согласно требованиям Правил устройства электроустановок (ПУЭ, гл. 1.2).
Сети с номинальным напряжением до 1 кВ, питающиеся от понижающих трансформаторов, присоединенных к сетям с Uном> 1 кВ, выполняются с глухим заземлением нейтрали. Сети с Uном до 1 кВ, питающиеся от автономного источника или разделительного трансформатора (по условию обеспечения максимальной электробезопасности при замыканиях на землю), выполняются с незаземленной нейтралью.
Сети с Uном = 110 кВ и выше выполняются с эффективным заземлением нейтрали (нейтраль заземляется непосредственно или через небольшое сопротивление).
В установках с большими токами замыкания на землю нейтрали присоединены к заземляющим устройствам непосредственно или через малые сопротивления. Такие установки называются установками с глухозаземленной нейтралью.
В установках, имеющих малые токи замыкания на землю, нейтрали присоединены к заземляющим устройствам через элементы с большими сопротивлениями. Такие установки называются установками с изолированной нейтралью.
В установках с глухозаземленной нейтралью всякое замыкание на землю является коротким замыканием и сопровождается большим током.
Принципиальные технологические схемы электростанций.
Принципиальная технологическая схема Конденсационной тепловой станции (КЭС):
В котел Кт подается топливо (уголь, газ, торф, сланцы), подогретый воздух и питательная вода (ее потери компенсируют химически очищенной водой ХОВ). Подача воздуха осуществляется дутьевым вентилятором ДВ, питательной воды – питательным насосом ПН. Образующиеся при сгорании топлива газы отсасываются из котла дымососом Д и выбрасываются в атмосферу через дымовую трубу высотой 100-250 м. Острый пар из котла подается в паровую турбину Тб, где, проходя через ряд ступеней, он совершает механическую работу – вращает турбину и жестко связанный с ней ротор генератора. Отработанный пар конденсируется в конденсаторе К, благодаря пропуску через него значительного количества холодной (5÷25°С) циркуляционной воды (расход этой воды в 50- 80 раз больше расхода пара через конденсатор).
