
- •Титульный лист
- •Контрольная работа № 1 и 2
- •Процессы и аппараты
- •Контрольная работа №1
- •Контрольные вопросы
- •Написать соотношение между удельным весом γ и плотностью ρ. Привести формулы для расчета ρ для газов. Привести значения ρ и γ для воды и ρ для воздуха.
- •Кинематическая υ и динамическая μ вязкости жидкостей и газов. Влияние на них давления и температуры. Привести значения υ и μ для воды и воздуха.
- •Напишите основное уравнение гидростатики. Из какого уравнения его получают, примеры практического применения. Как рассчитывается давление жидкости на дно и стенки сосуда?
- •Охарактеризовать два режима жидкостей. Эквивалентный диаметр – для чего ведено это понятие?
- •Написать уравнение расхода и неразрывности потока (материальный баланс потока) в интегральной (не дифференциальной) форме
- •Сущность физического (с использованием теории подобия) и математического моделирования
- •Написать основные критерии гидродинамического подобия и объяснить их физический смысл. Написать общий вид критериальной зависимости
- •Написать уравнение для определения потери напора на трение. Как рассчитываются коэффициенты трения и коэффициент местных сопротивлений
- •Сущность процесса псевдоожиженного слоя зернистого материала («кипящего слоя»). Графическое изображение перепада давления в слое в зависимости от скорости. Скорость витания и скорость уноса
- •Описать порядок расчета сопротивления слоя зернистого материала
- •В каких случаях рекомендуется применять насосы шестеренчатые, поршне вые, центробежные?
- •Характеристики центробежного насоса и вентилятора. Как по характеристике выбирается рациональный режим работы на сеть?
- •При каком соединении насосов (последовательном или параллельном) увеличиваются производительность, напор?
- •Перечислить и сравнить методы очистки газов от пыли. От каких факторов зависит выбор аппарата для очистки газа от пыли.
- •Описать последовательность расчета скорости осаждения
- •Сопоставить случаи применения барабанного вакуум-фильтра и фильтр-пресса. В каких случаях применяют барабанный вакуум-фильтр с внутренней фильтрующей поверхностью, а в какой – с наружной?
- •Перечислите виды центрифуг
- •Перечислите гидравлическое оборудование, которое есть на вашем участке.
- •Расчетные задачи
- •Контрольная работа №2 Контрольные вопросы
- •Перечислите все виды передачи тепла от одного тела к другому. Физическая сущность их.
- •Написать уравнение теплопроводности через плоскую и цилиндрическую стенки.
- •Написать уравнение передачи тепла конвекцией (теплоотдачей) в общем виде, объяснить физический смысл составляющих переменных и провести сравнение его с уравнением теплопроводности.
- •Написать уравнение теплопередачи, объяснить его физический смысл. Как выражается коэффициент теплопередачи через коэффициент теплоотдачи? Как рассчитывается средняя разность температур?
- •Критерии теплового подобия, их физический смысл. Какой критерий является определяемым и какая величина рассчитывается из этого критерия?
- •Перечислить и дать краткую характеристику способов нагревания и охлаждения. Перечислить основные виды теплообменной аппаратуры.
- •Прямоточное или противоточное направление теплоносителей в теплообменнике более целесообразно?. Ответ Обосновать.
- •Описать порядок расчета поверхности теплообменника .Типы конденсаторов смешения и принципы их работы.
- •Поверхностные конденсаторы. Определение средней разности температур для каждой зоны конденсатора.
- •Зачем ставятся перегородки в теплообменниках?
- •Перечислить типовые массообменные процессы и объяснить их физическую сущность.
- •Общее выражение массопередачи и объяснить значение его составляющих. Сопоставить его с уравнением теплопередачи и провести аналогию.
- •Написать выражение коэффициента массопередачи через коэффициенты массоотдачи и объяснить их физическую сущность
- •Статическая и динамическая активность адсорбента. Расчет времени защитного действия слоя адсорбента
- •Какой размер массообменного аппарата (высота, диаметр) влияет на производительность и какой на качество (на эффективность массопередачи)?
- •Показать на диаграмме Рамзина процессы нагревания воздуха, охлаждения его и смешение воздуха разных параметров.
- •Форсуночные камеры кондиционеров для обработки воздуха жидкими сорбентами. Принципиальные схемы.
Прямоточное или противоточное направление теплоносителей в теплообменнике более целесообразно?. Ответ Обосновать.
Противоточные процессы имеют преимущества в сравнении с прямоточными. Помимо более равномерного распределения разности температур вдоль поверхности нагрева при противотоке достигается более полное использование горячего теплоносителя. При противотоке более холодный теплоноситель с той же начальной температурой, что и при прямотоке, может нагреться до более высокой температуры, близкой к начальной температуре более нагретого теплоносителя. Это позволяет сократить расход более холодного теплоносителя, но одновременно приводит к некоторому уменьшению средней разности температур и соответственно – к увеличению потребной поверхности теплообмена при противотоке по сравнению с прямотоком. Однако экономический эффект, достигаемый вследствие уменьшения расхода теплоносителя при противотоке, превышает дополнительные затраты, связанные с увеличением размеров
Описать порядок расчета поверхности теплообменника .Типы конденсаторов смешения и принципы их работы.
Расчет теплообменного аппарата включает определение необходимой поверхности теплопередачи, выбор типа аппарата и нормализованного варианта конструкции, удовлетворяющих заданным технологическим условиям оптимальным образом. Необходимую поверхность теплопередачи определяют их основного уравнения теплопередачи:
F=Q/(KΔtср)
Тепловую нагрузку Q в соответствии с заданными технологическими условиями находят из уравнения теплового баланса для одного из теплоносителей. Если агрегатное состояние теплоносителя не меняется, тепловую нагрузку вычисляют по уравнению:
Q=Gi·сi·[tiн-tiк], i=1,2;
Тепловые потери при наличии теплоизоляции незначительны, поэтому при записи этих уравнений не учитывались.
Если агрегатное состояние теплоносителя не меняется, его среднюю температуру можно определить как среднеарифметическую между начальной и конечной температурами:
ti=(tiн+tiк)/2, i=1,2;
Более точное значение средней температуры одного из теплоносителей можно получить, используя среднюю разность температур:
ti=tj±Δtср,
где tj – среднеарифметическая температура теплоносителя с меньшим перепадом температуры вдоль поверхности теплообмена.
В аппаратах с прямо- или противоточным движением теплоносителей средняя разность температур потоков определяется как среднелогарифмическая между большей и меньшей разностями температур теплоносителей на концах аппарата:
Δtср=(Δtб-Δtм)/ln(Δtб/Δtм)
Для определения поверхности теплопередачи и выбора варианта конструкции теплообменного аппарата необходимо определить коэффициент теплопередачи. Его можно рассчитать с помощью уравнения аддитивности термических сопротивлений на пути теплового потока
1/К=1/α1+δст/λст+rз1+rз2+1/α2,
где α1 и α2 – коэффициенты теплоотдачи со стороны теплоносителей; λст – теплопроводность материала стенки; δст – толщина стенки; rз1, rз2 – термическое сопротивление слоев загрязнений с обеих сторон стенки.
Это уравнение справедливо для передачи тепла через плоскую или цилиндрическую стенку при условии, что Rн/Rв<2 (где Rн и Rв – наружный и внутренний радиусы цилиндра).
Однако на этой стадии расчета невозможно точное определение коэффициента теплопередачи, так как α1 и α2 зависят от параметров конструкции рассчитываемого теплообменного аппарата. Поэтому сначала на основании ориентировочной оценки коэффициента теплопередачи приходится приближенно определить поверхность и выбрать конкретный вариант конструкции, а затем провести уточненный расчет коэффициента теплопередачи и требуемой поверхности.
Сопоставление ее с поверхностью выбранного нормализованного варианта теплообменника дает ответ на вопрос о пригодности выбранного варианта для заданной технологической задачи.
Типы конденсаторов смешения и принципы их работы. В конденсаторах смешения пар и охлаждающая вода смешиваются путем впрыскивания воды в паровое пространство; при этом пар отдает скрытое тепло холодной воде, нагревает ее и конденсируется. Конденсаторы смешения могут применяться только для сжижения паров воды и других жидкостей, не представляющих ценности; в тех случаях, когда требуется выделить конденсат в чистом виде или конденсировать пары какой-нибудь ценной жидкости, конденсаторы смешения непригодны.
По способу действия различают конденсаторы смешения мокрые и сухие. В мокрых конденсаторах охлаждающая вода, конденсат и газы откачиваются совместно одним мокровоздушным насосом; в сухих или барометрических конденсаторах вода и конденсат стекают самотеком по одной трубе, воздух же и газы откачиваются из верхней части конденсатора воздушным вакуум-насосом.
В зависимости от взаимного направления движения пара и воды различают противоточные и прямоточные конденсаторы, а в зависимости от высоты расположения – конденсаторы низкого и высокого уровня.