
- •Информационно-технологический факультет Кафедра информационных технологий и управляющих систем
- •Контрольные вопросы и задачи к лекции 1
- •Лекция 2. Виды воздействий на сау
- •2.1. Классификация видов воздействий на сау Виды воздействий на сау описываются переходной, весовой, передаточной функциями.
- •2.2. Импульсные функции
- •Лекция 3. Преобразования Фурье и Лапласа
- •3.1. Преобразование Фурье
- •Лекция 4. Преобразование Лапласа
- •Контрольные вопросы и задачи к лекции 4
- •Лекция 5. Понятие линейного динамического звена
- •5.1. Уравнение линейного динамического звена
- •5.2. Передаточная функция линейного динамического звена
- •5.3. Структурная схема динамического звена
- •Контрольные вопросы и задачи к лекции 5
- •Лекция 6. Временные характеристики динамического звена
- •Контрольные вопросы и задачи к лекции 6
- •Лекция 7. Частотные характеристики динамического звена
- •Контрольные вопросы и задачи к лекции 7
- •Лекция 8. Элементарные (типовые) динамические звенья
- •Контрольные вопросы и задачи к лекции 8
- •Лекция 9. Временные и частотные характеристики звеньев
- •Контрольные вопросы и задачи
- •Лекция 7. Правила эквивалентных преобразований структурных схем систем автоматического управления
- •Принцип суперпозиции (наложения)
- •Контрольные вопросы и задачи
- •Лекция 8 Ориентированные графы систем автоматического управления
- •Использование формулы Мейсона для преобразования структурных схем и ориентированных графов
- •Контрольные вопросы и задачи
- •Лекция 9 Логарифмические частотные характеристики динамических звеньев
- •Логарифмические частотные характеристики элементарных динамических звеньев
- •Контрольные вопросы и задачи
- •Лекция 10 Логарифмические частотные характеристики систем автоматического управления
- •Контрольные вопросы и задачи
- •Лекция 11 Временные и частотные характеристики колебательного звена
- •Контрольные вопросы и задачи
- •Семестр 2 Лекция 12 Понятие многомерной системы
- •Контрольные вопросы и задачи
- •Лекция 13 Структурные матричные схемы и передаточные матрицы
- •Контрольные вопросы и задачи
- •Лекция 14 Математические модели в пространстве состояний
- •Контрольные вопросы и задачи
- •Лекция 15 Взаимосвязь видов математических моделей многомерных систем
- •Контрольные вопросы и задачи
- •Лекция 16 Методы оценки качества систем управления
- •Оценка качества переходного процесса при воздействии ступенчатой функции
- •Контрольные вопросы и задачи
- •Лекция 17 Оценка качества при гармонических воздействиях
- •Лекция 9. Интегральные оценки качества сау
- •Контрольные вопросы и задачи
- •Лекция 18 Вычисление линейных интегральных оценок
- •Квадратичная интегральная оценка
- •Контрольные вопросы и задачи
- •Лекция 19 Квадратичная интегральная оценка с учетом производной
- •Вычисление квадратичных интегральных оценок
- •Контрольные вопросы и задачи
- •Лекция 20 Корневые критерии качества переходных процессов
- •Контрольные вопросы и задачи
- •Лекция 21 Определения и задачи идентификации математических моделей
- •Контрольные вопросы и задачи
Принцип суперпозиции (наложения)
Применим рассмотренные правила для упрощения структурной схемы
Рис. 1
Процесс преобразования, который часто называют свертыванием структурной схемы, выглядит следующим образом.
Перенесем суммирующее звено через динамическое звено
.
Поменяем местами суммирующие звенья и .
Преобразуем последовательно включенные динамические звенья и
.
Преобразуем замкнутый контур с отрицательной обратной связью (
).
Перенесем суммирующее звено вправо.
Преобразуем последовательно включенные звенья..
В соответствии с полученной структурной схемой запишем операторное уравнение –
|
(1) |
Уравнение показывает,
что
является
линейной комбинацией изображений
входных сигналов, взятых с коэффициентами
и
.
Выясним смысл этих коэффициентов на
примере коэффициента
.
Для этого положим в (1)
,
тогда получим –
|
(2) |
Таким образом, из (2) следует, – это передаточная функция динамического звена, к которому свернута структурная схема в предположении, что изображения всех входных сигналов, кроме , равны нулю.
Теперь становится ясным смысл и самого операторного уравнения (1), описывающего систему. Он заключается в том, что реакция линейной системы на совместно действующие входные сигналы может быть определена в виде суммы частичных реакций, каждая из которых вычисляется в предположении, что на систему действует только один входной сигнал, а остальные равны нулю.
По сути – это формулировка фундаментального принципа, который называют принципом наложения или суперпозиции. Этот принцип можно рассматривать как дополнение к правилам эквивалентных преобразований структурных схем и активно использовать на практике.
Практически принцип суперпозиции для нахождения конкретной передаточной функции используют следующим образом. Полагают равными нулю все входные сигналы, кроме необходимого сигнала, а затем выполняют преобразование структурной схемы в одно динамическое звено.
Рассмотрим использование принципа суперпозиции на примере показанной на рис. 1 структурной схемы.
Полагаем и изобразим соответствующую этому случаю структурную схему.
Используя эквивалентные преобразования, получим –
.
Полагаем
и изобразим соответствующую этому случаю структурную схему.
Используя эквивалентные преобразования, получим –
.
Имея
, в соответствии с принципом суперпозиции получим "свернутую" структурную схему САУ.
Контрольные вопросы и задачи
Какие задачи позволяют решать правила эквивалентных преобразований структурных схем?
Дайте определение принципа суперпозиции применительно к структурным схемам систем автоматического управления.
Как используют принцип суперпозиции на практике?
Определите передаточные функции
по следующей структурной схеме
Ответ:
.
Определите передаточную функцию, эквивалентную структурной схеме.
Ответ:
.
Определите передаточные функции
по следующей структурной схеме
Ответ:
.
Определите передаточные функции
по следующей структурной схеме
Ответ: