
- •Назначения релейной защиты. Требования к релейной защите.
- •Классификация релейной защиты
- •Функции защиты. Основные характеристики.
- •Элементы защиты
- •Источники оперативного тока
- •Структура устройства рз
- •16.7.5. Защита двигателей от однофазных замыканий обмотки статора на землю.
- •Принцип действия тт
- •Типовые схемы соединений трансформаторов тока
- •2.4.1. Соединение трансформаторов тока и обмоток реле в полную звезду
- •2.4.2. Соединение трансформаторов тока и обмоток реле в неполную звезду
- •2.4.3. Соединение трансформаторов тока в треугольник, а обмоток реле в звезду
- •2.4.4. Включение реле на разность токов 2 – фаз (схема восьмерки)
- •2.4.5. Соединение трансформаторов тока в фильтр токов нулевой последовательности
- •2.4.6. Последовательное соединение трансформаторов тока
- •2.4.7. Параллельное соединение трансформаторов тока
- •Измерительные трансформаторы напряжения
- •6.1. Принцип действия
- •6.2. Погрешности трансформаторов напряжения
- •6.3. Схемы соединений трансформаторов напряжения
- •6.3.1. Схема соединения трансформаторов напряжения в звезду
- •6.3.2. Схема соединения обмоток трансформаторов напряжения в открытый треугольник
- •6.3.3. Схема соединения трансформаторов напряжения в разомкнутый треугольник
- •6.4. Контроль за исправностью цепей напряжения
- •4. Максимальная токовая защита
- •4.1. Принцип действия токовых защит
- •4.2. Защита линий с помощью мтз с независимой выдержкой времени
- •4.2.1. Схемы защиты
- •4.2.1.1. Трехфазная схема защиты на постоянном оперативном токе
- •4.2.1.2. Двухфазные схемы защиты на постоянном оперативном токе
- •4.2.1.2.2. Одно-релейная схема
- •4.2.2. Выбор тока срабатывания защиты
- •4.2.3. Чувствительность защиты
- •4.2.4. Выдержка времени защиты
- •4.3. Мтз с пуском (блокировкой) от реле минимального напряжения
- •4.3.1. Схема защиты
- •4.3.2. Ток срабатывания токовых реле
- •4.3.3. Напряжение срабатывания реле минимального напряжения
- •4.3.4. Чувствительность реле напряжения
- •4.4.3. Схема защиты
- •4.4.4. Выдержки времени защит
- •4.5. Мтз на переменном оперативном токе
- •4.5.1. Схема с дешунтированием катушки отключения выключателей
- •4.5.1.1. Схема защиты с зависимой характеристикой
- •4.5.1.2. Схема защиты с независимой характеристикой
- •4.5.2. Схемы с питанием оперативных цепей защиты от блоков питания
- •4.5.3. Схема защиты с использованием энергии заряженного конденсатора
- •4.7. Область применения мтз
- •5. Токовые отсечки
- •5.1. Принцип действия
- •5.2. Схемы отсечек
- •5.3. Отсечки мгновенного действия на линиях с односторонним питанием
- •5.3.1. Ток срабатывания отсечки
- •5.3.2. Зона действия отсечки
- •5.3.3. Время действия отсечки
- •5.4. Неселективные отсечки
- •5.5. Отсечки на линиях с двусторонним питанием
- •Токовая направленная защита
- •7.1. Необходимость токовой направленной защиты
- •7.3. Схема и принцип действия токовой направленной защиты
- •7.4. Схемы включения реле направления мощности
- •7.4.1. Требования к схемам включения
- •7.4.2. 90 И 30 схемы
- •7.4.3. Работа реле, включенных по 90 и 30 схемам
- •7.5. Блокировка максимальной направленной защиты при замыканиях на землю
- •7.6. Выбор уставок защиты
- •7.6.1. Ток срабатывания пусковых реле
- •7.6.2. Выдержка времени защиты
- •7.6.3. Мертвая зона
- •7.7. Токовые направленные отсечки
- •7.9. Оценка токовых направленных защит
- •8. Дифференциальная защита линий
- •8.1. Назначение и виды дифференциальных защит
- •8.2. Продольная дифференциальная защита
- •8.2.1. Принцип действия защиты
- •8.2.2. Токи небаланса в дифференциальной защите
- •8.2.3. Принципы выполнения продольной дифференциальной защиты
- •8.2.4. Комплект продольной дифференциальной защиты типа дзл
- •8.2.5. Оценка продольной дифференциальной защиты
- •8.3. Поперечная дифференциальная защита параллельных линий
- •8.3.1. Общие сведенья
- •8.3.2. Токовая поперечная дифференциальная защита
- •8.3.2.1. Принцип действия защиты
- •8.3.2.2. Мертвая зона защиты
- •8.3.3.2. Автоматическая блокировка защиты
- •8.3.3.3. Зона каскадного действия
- •8.3.3.4. Мертвая зона по напряжению
- •8.3.3.5. Схема направленной поперечной дифференциальной защиты
- •8.3.3.6. Выбор уставок направленной поперечной дифференциальной защиты
- •8.3.3.6.1. Ток срабатывания
- •8.3.3.6.2. Ток небаланса
- •8.3.3.6.3. Чувствительность защиты
- •8.3.3.7. Оценка направленных поперечных дифференциальных защит
- •9. Защита трансформаторов и автотрансформаторов
- •9.1. Виды повреждений трансформаторов и типы используемых защит
- •9.1.1. Повреждения трансформаторов и защиты от них
- •9.1.2. Ненормальные режимы трансформаторов и защита от них
- •9.2. Дифференциальная защита трансформаторов
- •9.2.1. Назначение и принцип действия дифференциальной защиты
- •9.2.2. Особенности дифференциальной защиты трансформаторов
- •9.2.3. Меры по выравниванию вторичных токов
- •9.2.3.1. Компенсация сдвига токов i1 и i2 по фазе
- •9.2.3.2. Выравнивание величин токов i1 и i2
- •9.2.4. Токи небаланса в дифференциальной защите
- •9.2.4.1. Общие сведенья
- •9.2.4.2. Причины повышенного тока небаланса в дифференциальной защите трансформаторов и автотрансформаторов
- •9.2.4.3. Расчет тока небаланса
- •9.2.4.4. Меры для предупреждения действия защиты от токов небаланса
- •9.2.4.5. Токи намагничивания силовых трансформаторов и автотрансформаторов при включении их под напряжение
- •9.2.5. Схемы дифференциальных защит
- •9.2.5.1. Дифференциальная токовая отсечка
- •9.2.5.2. Дифференциальная защита с токовыми реле, включенными через бнт
- •9.2.5.2.1. Общие сведенья
- •9.2.5.2.2. Варианты схем включения обмоток реле рнт
- •9.2.5.2.3. Расчет уставок дифференциальной защиты на реле рнт-565
- •9.2.5.3. Дифференциальная защита с реле имеющим торможение
- •9.2.5.3.1. Общие сведенья
- •9.2.5.3.2. Характеристика реле с торможением
- •9.2.6. Оценка дифференциальных защит трансформаторов
- •9.3. Токовая отсечка трансформаторов
- •9.4. Газовая защита
- •9.4.1. Принцип действия и устройство газового реле
- •9.4.2. Оценка газовой защиты
- •9.5. Защита от сверхтоков
- •9.5.1. Назначение защиты от сверхтоков
- •9.5.2. Максимальная токовая защита трансформаторов
- •9.5.2.1. Защита 2-х обмоточных понизительных трансформаторов
- •9.5.2.2. Защита трансформаторов с расщепленной обмоткой нижнего напряжения, или работающих на две секции шин
- •9.5.2.3. Защита трехобмоточных трансформаторов
- •9.5.2.3.1. Защита трехобмоточных трансформаторов при отсутствии питания со стороны обмотки среднего напряжения
- •9.5.2.3.2. Защита трехобмоточных трансформаторов, имеющих 2-х и 3-х стороннее питание
- •9.6.3. Защита от перегрузки трехобмоточных трансформаторов
- •9.6.4. Защита от перегрузки автотрансформаторов
- •П1.1.3. Типы защит
- •П1.2. Защита от многофазных кз
- •П1.3. Защита от перегрузки
- •П1.4. Защита минимального напряжения
- •16.12. Автоматика ачр
- •16.11. Автоматика уров(Устройство резервирования при отказе выключателя)
- •16.9 Автоматика авр.
- •Общие требования к авр
- •Принцип действия
- •16.8 Защита низковольтных электродвигателей.
9.6.3. Защита от перегрузки трехобмоточных трансформаторов
При неравной мощности обмоток или 2-х и 3-х стороннем питании защиту от перегрузки ставят на всех обмотках.
9.6.4. Защита от перегрузки автотрансформаторов
Защита от перегрузки устанавливается со стороны низкого и высокого напряжений, а также со стороны нейтрали для контроля за перегрузкой общей части обмотки. Кроме того, на повышающих автотрансформаторах с трехсторонним питанием устанавливается защита со стороны среднего напряжения в режиме, когда в обмотке низкого напряжения нет тока (в таком режиме пропускная мощность автотрансформатора снижается).
Защита электродвигателей 6-10 кВ
П1.1. Повреждения и ненормальные режимы работы электродвигателей. Типы защит
П1.1.1. Повреждения электродвигателей
Многофазные КЗ – в обмотках и на выводах;
Замыкания на землю одной фазы статора (опасны только для мощных двигателей более 2МВт), ток обычно не превышает 5-20 А (сети и изолированной нейтралью);
Витковые замыкания (имеют тенденцию переходить в замыкания на землю или в многофазные КЗ).
П1.1.2. Ненормальные режимы работы
Перегрузка. Допустимое время перегрузки может быть определено по формуле:
(П1.1.)
где: k – кратность тока по отношению к номинальному;
А – коэффициент, зависящий от типа и исполнения двигателя:
А=250 – для закрытых, массивных и больших по размеру,
А=150 – для открытых двигателей.
Перегрузка возникает при неисправности механизма или его перегрузке, а также при пуске и самозапуске двигателей.
Обрыв одной из фаз статора.
В принципе двигатель может работать в таком режиме, перегрузка оставшихся в работе фаз составляет 1,5-2 по отношению к номиналу.
П1.1.3. Типы защит
Токовая отсечка (основная защита от КЗ в двигателе);
Продольная дифференциальная защита (используется на мощных двигателях);
Защита от обрыва фаз (если такой режим может привести к дальнейшему повреждению двигателя или нарушению нормальной работы механизма);
Защита от однофазных замыканий (если существует опасность перенапряжений и перерастания однофазного замыкания в междуфазное КЗ);
Защита от перегрузки (на двигателях подверженных технологическим перегрузкам);
Защита от понижения напряжения (групповая защита отключающая малоответственные двигатели при самозапуске).
П1.2. Защита от многофазных кз
На двигателях до 5 МВт используются токовая отсечка.
На рис. П1.1. приведена схема отсечки для двигателей мощностью до 2 МВт, одно-релейная схема, включенная по схеме восьмерки.
Рис. П1.1.
(П1.2.)
где: IПУСК – пусковой ток двигателя;
kСХ – коэффициент схемы в данном случае равен ;
kН – коэффициент надежности, для реле РТ-40 равен 1,8.
Коэффициент чувствительности схемы должен быть не менее 2. Если коэффициент чувствительности не удовлетворяет этому требованию, или мощность двигателя составляет 2-5 МВт используют более чувствительную схему – 2-х релейную, 2-х фазную схему (представлена на рис. П1.2.). В схеме могут использоваться реле типа РТ-40, в этом случае схема оперативных цепей аналогична схеме отсечки на рис. П1.1. Если в качестве токовых реле используются реле РТ-80, защита может действовать и от перегрузки (индукционный элемент реле РТ-80).
Рис. П1.2.
В двигателях мощностью свыше 5 МВт используется продольная дифференциальная защита (см. рис. П1.3.).
Рис. П1.3.
Схема данной защиты 2-х или 3-х фазная на реле РНТ-565. Ток срабатывания защиты рекомендуется принимать:
(П1.3.)