
- •Назначения релейной защиты. Требования к релейной защите.
- •Классификация релейной защиты
- •Функции защиты. Основные характеристики.
- •Элементы защиты
- •Источники оперативного тока
- •Структура устройства рз
- •16.7.5. Защита двигателей от однофазных замыканий обмотки статора на землю.
- •Принцип действия тт
- •Типовые схемы соединений трансформаторов тока
- •2.4.1. Соединение трансформаторов тока и обмоток реле в полную звезду
- •2.4.2. Соединение трансформаторов тока и обмоток реле в неполную звезду
- •2.4.3. Соединение трансформаторов тока в треугольник, а обмоток реле в звезду
- •2.4.4. Включение реле на разность токов 2 – фаз (схема восьмерки)
- •2.4.5. Соединение трансформаторов тока в фильтр токов нулевой последовательности
- •2.4.6. Последовательное соединение трансформаторов тока
- •2.4.7. Параллельное соединение трансформаторов тока
- •Измерительные трансформаторы напряжения
- •6.1. Принцип действия
- •6.2. Погрешности трансформаторов напряжения
- •6.3. Схемы соединений трансформаторов напряжения
- •6.3.1. Схема соединения трансформаторов напряжения в звезду
- •6.3.2. Схема соединения обмоток трансформаторов напряжения в открытый треугольник
- •6.3.3. Схема соединения трансформаторов напряжения в разомкнутый треугольник
- •6.4. Контроль за исправностью цепей напряжения
- •4. Максимальная токовая защита
- •4.1. Принцип действия токовых защит
- •4.2. Защита линий с помощью мтз с независимой выдержкой времени
- •4.2.1. Схемы защиты
- •4.2.1.1. Трехфазная схема защиты на постоянном оперативном токе
- •4.2.1.2. Двухфазные схемы защиты на постоянном оперативном токе
- •4.2.1.2.2. Одно-релейная схема
- •4.2.2. Выбор тока срабатывания защиты
- •4.2.3. Чувствительность защиты
- •4.2.4. Выдержка времени защиты
- •4.3. Мтз с пуском (блокировкой) от реле минимального напряжения
- •4.3.1. Схема защиты
- •4.3.2. Ток срабатывания токовых реле
- •4.3.3. Напряжение срабатывания реле минимального напряжения
- •4.3.4. Чувствительность реле напряжения
- •4.4.3. Схема защиты
- •4.4.4. Выдержки времени защит
- •4.5. Мтз на переменном оперативном токе
- •4.5.1. Схема с дешунтированием катушки отключения выключателей
- •4.5.1.1. Схема защиты с зависимой характеристикой
- •4.5.1.2. Схема защиты с независимой характеристикой
- •4.5.2. Схемы с питанием оперативных цепей защиты от блоков питания
- •4.5.3. Схема защиты с использованием энергии заряженного конденсатора
- •4.7. Область применения мтз
- •5. Токовые отсечки
- •5.1. Принцип действия
- •5.2. Схемы отсечек
- •5.3. Отсечки мгновенного действия на линиях с односторонним питанием
- •5.3.1. Ток срабатывания отсечки
- •5.3.2. Зона действия отсечки
- •5.3.3. Время действия отсечки
- •5.4. Неселективные отсечки
- •5.5. Отсечки на линиях с двусторонним питанием
- •Токовая направленная защита
- •7.1. Необходимость токовой направленной защиты
- •7.3. Схема и принцип действия токовой направленной защиты
- •7.4. Схемы включения реле направления мощности
- •7.4.1. Требования к схемам включения
- •7.4.2. 90 И 30 схемы
- •7.4.3. Работа реле, включенных по 90 и 30 схемам
- •7.5. Блокировка максимальной направленной защиты при замыканиях на землю
- •7.6. Выбор уставок защиты
- •7.6.1. Ток срабатывания пусковых реле
- •7.6.2. Выдержка времени защиты
- •7.6.3. Мертвая зона
- •7.7. Токовые направленные отсечки
- •7.9. Оценка токовых направленных защит
- •8. Дифференциальная защита линий
- •8.1. Назначение и виды дифференциальных защит
- •8.2. Продольная дифференциальная защита
- •8.2.1. Принцип действия защиты
- •8.2.2. Токи небаланса в дифференциальной защите
- •8.2.3. Принципы выполнения продольной дифференциальной защиты
- •8.2.4. Комплект продольной дифференциальной защиты типа дзл
- •8.2.5. Оценка продольной дифференциальной защиты
- •8.3. Поперечная дифференциальная защита параллельных линий
- •8.3.1. Общие сведенья
- •8.3.2. Токовая поперечная дифференциальная защита
- •8.3.2.1. Принцип действия защиты
- •8.3.2.2. Мертвая зона защиты
- •8.3.3.2. Автоматическая блокировка защиты
- •8.3.3.3. Зона каскадного действия
- •8.3.3.4. Мертвая зона по напряжению
- •8.3.3.5. Схема направленной поперечной дифференциальной защиты
- •8.3.3.6. Выбор уставок направленной поперечной дифференциальной защиты
- •8.3.3.6.1. Ток срабатывания
- •8.3.3.6.2. Ток небаланса
- •8.3.3.6.3. Чувствительность защиты
- •8.3.3.7. Оценка направленных поперечных дифференциальных защит
- •9. Защита трансформаторов и автотрансформаторов
- •9.1. Виды повреждений трансформаторов и типы используемых защит
- •9.1.1. Повреждения трансформаторов и защиты от них
- •9.1.2. Ненормальные режимы трансформаторов и защита от них
- •9.2. Дифференциальная защита трансформаторов
- •9.2.1. Назначение и принцип действия дифференциальной защиты
- •9.2.2. Особенности дифференциальной защиты трансформаторов
- •9.2.3. Меры по выравниванию вторичных токов
- •9.2.3.1. Компенсация сдвига токов i1 и i2 по фазе
- •9.2.3.2. Выравнивание величин токов i1 и i2
- •9.2.4. Токи небаланса в дифференциальной защите
- •9.2.4.1. Общие сведенья
- •9.2.4.2. Причины повышенного тока небаланса в дифференциальной защите трансформаторов и автотрансформаторов
- •9.2.4.3. Расчет тока небаланса
- •9.2.4.4. Меры для предупреждения действия защиты от токов небаланса
- •9.2.4.5. Токи намагничивания силовых трансформаторов и автотрансформаторов при включении их под напряжение
- •9.2.5. Схемы дифференциальных защит
- •9.2.5.1. Дифференциальная токовая отсечка
- •9.2.5.2. Дифференциальная защита с токовыми реле, включенными через бнт
- •9.2.5.2.1. Общие сведенья
- •9.2.5.2.2. Варианты схем включения обмоток реле рнт
- •9.2.5.2.3. Расчет уставок дифференциальной защиты на реле рнт-565
- •9.2.5.3. Дифференциальная защита с реле имеющим торможение
- •9.2.5.3.1. Общие сведенья
- •9.2.5.3.2. Характеристика реле с торможением
- •9.2.6. Оценка дифференциальных защит трансформаторов
- •9.3. Токовая отсечка трансформаторов
- •9.4. Газовая защита
- •9.4.1. Принцип действия и устройство газового реле
- •9.4.2. Оценка газовой защиты
- •9.5. Защита от сверхтоков
- •9.5.1. Назначение защиты от сверхтоков
- •9.5.2. Максимальная токовая защита трансформаторов
- •9.5.2.1. Защита 2-х обмоточных понизительных трансформаторов
- •9.5.2.2. Защита трансформаторов с расщепленной обмоткой нижнего напряжения, или работающих на две секции шин
- •9.5.2.3. Защита трехобмоточных трансформаторов
- •9.5.2.3.1. Защита трехобмоточных трансформаторов при отсутствии питания со стороны обмотки среднего напряжения
- •9.5.2.3.2. Защита трехобмоточных трансформаторов, имеющих 2-х и 3-х стороннее питание
- •9.6.3. Защита от перегрузки трехобмоточных трансформаторов
- •9.6.4. Защита от перегрузки автотрансформаторов
- •П1.1.3. Типы защит
- •П1.2. Защита от многофазных кз
- •П1.3. Защита от перегрузки
- •П1.4. Защита минимального напряжения
- •16.12. Автоматика ачр
- •16.11. Автоматика уров(Устройство резервирования при отказе выключателя)
- •16.9 Автоматика авр.
- •Общие требования к авр
- •Принцип действия
- •16.8 Защита низковольтных электродвигателей.
9.4. Газовая защита
9.4.1. Принцип действия и устройство газового реле
Образование
газов в кожухе трансформатора и движение
масла в сторону расширителя могут
служить признаком повреждения внутри
трансформатора (см. рис. 9.4.1.).
Существует три разновидности газовых реле, к устаревшим конструкциям относят поплавковые и лопастные; современные газовые реле – чашечного типа.
Конструкция чашечного газового реле представлена на рис. 9.4.2.
Реле
имеет два элемента – сигнальный
и отключающий
(чашки 1 и 2). Чашка может вращаться вокруг
оси 3. 4-5 – подвижный контакт; 6-7 –
неподвижный контакт; 8-9 – противодействующие
пружины; 12 – лопасть на нижней чашке,
вращающаяся на оси.
Если в кожухе реле и в чашках нет масла, то контакты разомкнуты. Та же, если кожух реле заполнен маслом. При понижении уровня масла в реле, под весом масла в чашке контакт замыкается. При бурном газообразовании, под действием потока масла лопасть 12 поворачивается и замыкает контакты.
При небольших повреждениях в трансформаторе образование газа происходит медленно, он поднимается к расширителю, проходя через реле, газ заполняет верхнюю часть её кожуха, вытесняя оттуда масло – замкнется контакт 4-6.
При значительном повреждении в трансформаторе, газообразование протекает бурно, под влиянием давления, масло приходит в движение, лопасть 12 замыкает контакты 5-7.
Реле способно различать степень повреждения в трансформаторе. при малых – сигнал, при больших – отключение.
Газовая защита реагирует и на понижение уровня масла – вначале на сигнал, затем на отключение.
Схема включения газового реле представлена на рис. 9.4.3. Для предупреждения неправильного отключения трансформатора, отключающая цепь газовой защиты после доливки масла или включения нового трансформатора переводится на сигнал (до 2-3 суток) до тех пор, пока не прекратится выделение воздуха, отмечаемые по работе защиты на сигнал.
9.4.2. Оценка газовой защиты
Достоинства:
Простота;
Высокая чувствительность;
Малое время действия при значительных повреждениях.
Газовая защита является наиболее чувствительной защитой трансформаторов от повреждений его обмоток и особенно витковых замыканий, на которые дифференциальная защита реагирует только при замыкании большого числа витков, а МТЗ и отсечка не реагируют совсем.
Недостатки:
Не действует при повреждениях на выводах трансформатора;
Должна выводиться из работы после доливки масла.
Применение
Обязательно устанавливается на трансформаторах мощностью 6300 кВА и выше, а также на трансформаторах 1000-4000 кВА не имеющих дифференциальной защиты или отсечки и если МТЗ имеет выдержку времени более 1 секунды. При наличие быстродействующих защит, её применение допускается. На внутрицеховых трансформаторах мощностью 630 кВА и выше обязательна к применению, независимо от наличия других быстродействующих защит.
9.5. Защита от сверхтоков
9.5.1. Назначение защиты от сверхтоков
Защита
от сверхтоков
служит для отключения трансформаторов
при КЗ на сборных шинах или на отходящих
от неё присоединениях, если защиты или
выключатели этих элементов отказали
(см. рис. 9.5.1.). Одновременно защита от
сверхтоков используется и для отключения
при повреждении в самом трансформаторе.
Однако, имея выдержку времени (по условиям
селективности) она может использоваться
лишь в качестве резервной.
Наиболее простой защитой от внешних КЗ является МТЗ. В тех случаях, когда чувствительность её недостаточна, применяют МТЗ с блокировкой по напряжению.
Понизительные трансформаторы защищаются МТЗ. Кратность тока КЗ обычно значительна и достаточна для действия МТЗ.
Повышающие трансформаторы, устанавливаемые на электрических станциях находятся в худших условиях. МТЗ может иметь недостаточную чувствительность. Кратность тока КЗ невелика. Здесь применяются защиты реагирующие на ток обратной и нулевой последовательности. Также используются МТЗ с пуском по напряжению.