
- •Назначения релейной защиты. Требования к релейной защите.
- •Классификация релейной защиты
- •Функции защиты. Основные характеристики.
- •Элементы защиты
- •Источники оперативного тока
- •Структура устройства рз
- •16.7.5. Защита двигателей от однофазных замыканий обмотки статора на землю.
- •Принцип действия тт
- •Типовые схемы соединений трансформаторов тока
- •2.4.1. Соединение трансформаторов тока и обмоток реле в полную звезду
- •2.4.2. Соединение трансформаторов тока и обмоток реле в неполную звезду
- •2.4.3. Соединение трансформаторов тока в треугольник, а обмоток реле в звезду
- •2.4.4. Включение реле на разность токов 2 – фаз (схема восьмерки)
- •2.4.5. Соединение трансформаторов тока в фильтр токов нулевой последовательности
- •2.4.6. Последовательное соединение трансформаторов тока
- •2.4.7. Параллельное соединение трансформаторов тока
- •Измерительные трансформаторы напряжения
- •6.1. Принцип действия
- •6.2. Погрешности трансформаторов напряжения
- •6.3. Схемы соединений трансформаторов напряжения
- •6.3.1. Схема соединения трансформаторов напряжения в звезду
- •6.3.2. Схема соединения обмоток трансформаторов напряжения в открытый треугольник
- •6.3.3. Схема соединения трансформаторов напряжения в разомкнутый треугольник
- •6.4. Контроль за исправностью цепей напряжения
- •4. Максимальная токовая защита
- •4.1. Принцип действия токовых защит
- •4.2. Защита линий с помощью мтз с независимой выдержкой времени
- •4.2.1. Схемы защиты
- •4.2.1.1. Трехфазная схема защиты на постоянном оперативном токе
- •4.2.1.2. Двухфазные схемы защиты на постоянном оперативном токе
- •4.2.1.2.2. Одно-релейная схема
- •4.2.2. Выбор тока срабатывания защиты
- •4.2.3. Чувствительность защиты
- •4.2.4. Выдержка времени защиты
- •4.3. Мтз с пуском (блокировкой) от реле минимального напряжения
- •4.3.1. Схема защиты
- •4.3.2. Ток срабатывания токовых реле
- •4.3.3. Напряжение срабатывания реле минимального напряжения
- •4.3.4. Чувствительность реле напряжения
- •4.4.3. Схема защиты
- •4.4.4. Выдержки времени защит
- •4.5. Мтз на переменном оперативном токе
- •4.5.1. Схема с дешунтированием катушки отключения выключателей
- •4.5.1.1. Схема защиты с зависимой характеристикой
- •4.5.1.2. Схема защиты с независимой характеристикой
- •4.5.2. Схемы с питанием оперативных цепей защиты от блоков питания
- •4.5.3. Схема защиты с использованием энергии заряженного конденсатора
- •4.7. Область применения мтз
- •5. Токовые отсечки
- •5.1. Принцип действия
- •5.2. Схемы отсечек
- •5.3. Отсечки мгновенного действия на линиях с односторонним питанием
- •5.3.1. Ток срабатывания отсечки
- •5.3.2. Зона действия отсечки
- •5.3.3. Время действия отсечки
- •5.4. Неселективные отсечки
- •5.5. Отсечки на линиях с двусторонним питанием
- •Токовая направленная защита
- •7.1. Необходимость токовой направленной защиты
- •7.3. Схема и принцип действия токовой направленной защиты
- •7.4. Схемы включения реле направления мощности
- •7.4.1. Требования к схемам включения
- •7.4.2. 90 И 30 схемы
- •7.4.3. Работа реле, включенных по 90 и 30 схемам
- •7.5. Блокировка максимальной направленной защиты при замыканиях на землю
- •7.6. Выбор уставок защиты
- •7.6.1. Ток срабатывания пусковых реле
- •7.6.2. Выдержка времени защиты
- •7.6.3. Мертвая зона
- •7.7. Токовые направленные отсечки
- •7.9. Оценка токовых направленных защит
- •8. Дифференциальная защита линий
- •8.1. Назначение и виды дифференциальных защит
- •8.2. Продольная дифференциальная защита
- •8.2.1. Принцип действия защиты
- •8.2.2. Токи небаланса в дифференциальной защите
- •8.2.3. Принципы выполнения продольной дифференциальной защиты
- •8.2.4. Комплект продольной дифференциальной защиты типа дзл
- •8.2.5. Оценка продольной дифференциальной защиты
- •8.3. Поперечная дифференциальная защита параллельных линий
- •8.3.1. Общие сведенья
- •8.3.2. Токовая поперечная дифференциальная защита
- •8.3.2.1. Принцип действия защиты
- •8.3.2.2. Мертвая зона защиты
- •8.3.3.2. Автоматическая блокировка защиты
- •8.3.3.3. Зона каскадного действия
- •8.3.3.4. Мертвая зона по напряжению
- •8.3.3.5. Схема направленной поперечной дифференциальной защиты
- •8.3.3.6. Выбор уставок направленной поперечной дифференциальной защиты
- •8.3.3.6.1. Ток срабатывания
- •8.3.3.6.2. Ток небаланса
- •8.3.3.6.3. Чувствительность защиты
- •8.3.3.7. Оценка направленных поперечных дифференциальных защит
- •9. Защита трансформаторов и автотрансформаторов
- •9.1. Виды повреждений трансформаторов и типы используемых защит
- •9.1.1. Повреждения трансформаторов и защиты от них
- •9.1.2. Ненормальные режимы трансформаторов и защита от них
- •9.2. Дифференциальная защита трансформаторов
- •9.2.1. Назначение и принцип действия дифференциальной защиты
- •9.2.2. Особенности дифференциальной защиты трансформаторов
- •9.2.3. Меры по выравниванию вторичных токов
- •9.2.3.1. Компенсация сдвига токов i1 и i2 по фазе
- •9.2.3.2. Выравнивание величин токов i1 и i2
- •9.2.4. Токи небаланса в дифференциальной защите
- •9.2.4.1. Общие сведенья
- •9.2.4.2. Причины повышенного тока небаланса в дифференциальной защите трансформаторов и автотрансформаторов
- •9.2.4.3. Расчет тока небаланса
- •9.2.4.4. Меры для предупреждения действия защиты от токов небаланса
- •9.2.4.5. Токи намагничивания силовых трансформаторов и автотрансформаторов при включении их под напряжение
- •9.2.5. Схемы дифференциальных защит
- •9.2.5.1. Дифференциальная токовая отсечка
- •9.2.5.2. Дифференциальная защита с токовыми реле, включенными через бнт
- •9.2.5.2.1. Общие сведенья
- •9.2.5.2.2. Варианты схем включения обмоток реле рнт
- •9.2.5.2.3. Расчет уставок дифференциальной защиты на реле рнт-565
- •9.2.5.3. Дифференциальная защита с реле имеющим торможение
- •9.2.5.3.1. Общие сведенья
- •9.2.5.3.2. Характеристика реле с торможением
- •9.2.6. Оценка дифференциальных защит трансформаторов
- •9.3. Токовая отсечка трансформаторов
- •9.4. Газовая защита
- •9.4.1. Принцип действия и устройство газового реле
- •9.4.2. Оценка газовой защиты
- •9.5. Защита от сверхтоков
- •9.5.1. Назначение защиты от сверхтоков
- •9.5.2. Максимальная токовая защита трансформаторов
- •9.5.2.1. Защита 2-х обмоточных понизительных трансформаторов
- •9.5.2.2. Защита трансформаторов с расщепленной обмоткой нижнего напряжения, или работающих на две секции шин
- •9.5.2.3. Защита трехобмоточных трансформаторов
- •9.5.2.3.1. Защита трехобмоточных трансформаторов при отсутствии питания со стороны обмотки среднего напряжения
- •9.5.2.3.2. Защита трехобмоточных трансформаторов, имеющих 2-х и 3-х стороннее питание
- •9.6.3. Защита от перегрузки трехобмоточных трансформаторов
- •9.6.4. Защита от перегрузки автотрансформаторов
- •П1.1.3. Типы защит
- •П1.2. Защита от многофазных кз
- •П1.3. Защита от перегрузки
- •П1.4. Защита минимального напряжения
- •16.12. Автоматика ачр
- •16.11. Автоматика уров(Устройство резервирования при отказе выключателя)
- •16.9 Автоматика авр.
- •Общие требования к авр
- •Принцип действия
- •16.8 Защита низковольтных электродвигателей.
8.2.2. Токи небаланса в дифференциальной защите
(8.3.)
При внешнем КЗ:
Iнб=III.нам–II.нам (8.4.)
Для
уменьшения тока небаланса необходимо
выровнять токи намагничивания
трансформаторов по величине и фазе. Ток
намагничивания трансформаторов тока
зависит от магнитной индукции или
вторичной ЭДС (см. рис. 8.2.5.)
Выполнить характеристики намагничивания идентичными у разных трансформаторов тока практически не удается.
Ток небаланса особенно возрастает при насыщении магнитопровода трансформатора. Даже при максимальном токе протекающем по первичной обмотке при КЗ, трансформаторы тока не должны насыщаться.
Пути уменьшения тока небаланса
1. Применяются трансформаторы тока насыщающиеся при возможно больших кратностях тока КЗ (трансформаторы тока класса Р(Д)).
2. Ограничение величины вторичной ЭДС:
(8.5.)
Для этого уменьшают нагрузку ZН и увеличивают коэффициент трансформации nТ.
3. Для выравнивания токов намагничивания II.нам и III.нам необходимо, чтобы нагрузка трансформатора тока была равной ZН1= ZН2.
Точных и простых для практики способов расчета тока небаланса ещё не разработано. При проектировании используют формулы, приведенные в «Руководящих указаниях по релейной защите».
8.2.3. Принципы выполнения продольной дифференциальной защиты
1.
Использование
промежуточных трансформаторов тока
Трансформаторы тока, соединяемые в дифференциальную схему, находятся на значительном расстоянии. Сопротивление соединительных проводов между трансформаторами тока очень велико. К примеру, для линии длиной 10 км и сечения контрольного кабеля 1,5 мм2, его сопротивление составит 130 Ом. Трансформаторы тока допускают нагрузку в пределах 1-2 Ом. Подобное затруднение преодолевается применением промежуточных трансформаторов тока TLA. Они уменьшают ток в соединительных проводах в nL раз, снижая нагрузку соединительных проводов, приведенную к зажимам основных трансформаторов тока в nL2 раз.
2. Установка двух дифференциальных реле
Дифференциальная
защита должна действовать на отключение
выключателей на обоих концах защищаемой
линии. Для этого устанавливают два
дифференциальных реле. Однако подобный
способ имеет недостаток из-за сопротивления
соединительных проводов токи, поступающие
в реле при сквозных КЗ не балансируются,
даже при работе трансформаторов тока
без погрешностей.
Для
уменьшения тока небаланса необходимо
уменьшать сопротивление соединительных
проводов.
При
КЗ в зоне в схеме с одним реле в него
поступает сумма вторичных токов
трансформаторов тока: IP=I1+I2=IK.
В схеме с двумя реле:
(если сопротивление проводов равно
нулю). То есть чувствительность защиты
уменьшается.
(В схеме с уравновешенными напряжениями установка двух реле не меняет условий работы схемы.)
3. Использование дифференциальных реле с торможением
Для
отстройки от токов небаланса получили
распространение так называемые
дифференциальные реле с торможением.
Ток срабатывания у таких реле возрастает
с увеличением тока внешнего КЗ.
Принципиальная схема конструкции такого
реле изображена на рис. 8.2.8.
IC.P.=kTIT+IP.0 (8.6.)
где: IT - ток, протекающий через тормозную обмотку;
IP.0 - ток срабатывания реле при тормозном токе равном нулю;
kT - коэффициент торможения.
Схема
включения реле с торможением показана
на рис. 8.2.9. При внешнем КЗ в тормозной
обмотке протекает ток КЗ, а в рабочей
обмотке – ток небаланса; реле надежно
не срабатывает.
При КЗ в зоне (см. рис. 8.2.10.) в случае одностороннего питания I2=0 и токи в рабочей и тормозной обмотках совпадают и равны IК; при таких условиях реле сработает.
Зависимость IP = f ( IT ) изображена на рис. 8.2.11. При одинаковых условиях отстройки от тока небаланса при внешних КЗ, реле с тормозной характеристикой обладает большей чувствительностью по сравнению с простым дифференциальным реле.
Современные
защиты оснащены тормозными реле на
выпрямленном токе с реагирующим органом
в виде поляризованного реле.
4. Включение дифференциальных реле через фильтры симметричных составляющих
Во всех выше рассмотренных схемах подразумевалась установка реле на трех фазах. Для выполнения таких схем необходимо 6 дифференциальных реле и не менее четырех соединительных проводов. Для уменьшения числа реле и соединительных проводов, реле включаются через фильтры симметричных составляющих или суммирующие трансформаторы ( см. рис. 8.2.12.). На рисунке буквами KAZ обозначены фильтры токов, на их выходе протекает ток IФ1 пропорциональный токам прямой последовательности. Составляющая прямой последовательности присутствует в фазных токах при всех видах КЗ. В схеме предусмотрены разделительные трансформаторы TL3,4, с помощью которых цепь соединительного кабеля А – В отделяется от цепей реле. Такое разделение исключает появление в цепях реле высоких напряжений, наводимых в жилах кабеля при протекании токов КЗ по защищаемой линии. В нормальном режиме и при внешнем КЗ по соединительным жилам протекает ток, пропорциональный первичному току линии, а при КЗ на линии в соединительных проводах А – В проходит небольшой ток I1–I2.
Рис. 8.2.12.