
- •Назначения релейной защиты. Требования к релейной защите.
- •Классификация релейной защиты
- •Функции защиты. Основные характеристики.
- •Элементы защиты
- •Источники оперативного тока
- •Структура устройства рз
- •16.7.5. Защита двигателей от однофазных замыканий обмотки статора на землю.
- •Принцип действия тт
- •Типовые схемы соединений трансформаторов тока
- •2.4.1. Соединение трансформаторов тока и обмоток реле в полную звезду
- •2.4.2. Соединение трансформаторов тока и обмоток реле в неполную звезду
- •2.4.3. Соединение трансформаторов тока в треугольник, а обмоток реле в звезду
- •2.4.4. Включение реле на разность токов 2 – фаз (схема восьмерки)
- •2.4.5. Соединение трансформаторов тока в фильтр токов нулевой последовательности
- •2.4.6. Последовательное соединение трансформаторов тока
- •2.4.7. Параллельное соединение трансформаторов тока
- •Измерительные трансформаторы напряжения
- •6.1. Принцип действия
- •6.2. Погрешности трансформаторов напряжения
- •6.3. Схемы соединений трансформаторов напряжения
- •6.3.1. Схема соединения трансформаторов напряжения в звезду
- •6.3.2. Схема соединения обмоток трансформаторов напряжения в открытый треугольник
- •6.3.3. Схема соединения трансформаторов напряжения в разомкнутый треугольник
- •6.4. Контроль за исправностью цепей напряжения
- •4. Максимальная токовая защита
- •4.1. Принцип действия токовых защит
- •4.2. Защита линий с помощью мтз с независимой выдержкой времени
- •4.2.1. Схемы защиты
- •4.2.1.1. Трехфазная схема защиты на постоянном оперативном токе
- •4.2.1.2. Двухфазные схемы защиты на постоянном оперативном токе
- •4.2.1.2.2. Одно-релейная схема
- •4.2.2. Выбор тока срабатывания защиты
- •4.2.3. Чувствительность защиты
- •4.2.4. Выдержка времени защиты
- •4.3. Мтз с пуском (блокировкой) от реле минимального напряжения
- •4.3.1. Схема защиты
- •4.3.2. Ток срабатывания токовых реле
- •4.3.3. Напряжение срабатывания реле минимального напряжения
- •4.3.4. Чувствительность реле напряжения
- •4.4.3. Схема защиты
- •4.4.4. Выдержки времени защит
- •4.5. Мтз на переменном оперативном токе
- •4.5.1. Схема с дешунтированием катушки отключения выключателей
- •4.5.1.1. Схема защиты с зависимой характеристикой
- •4.5.1.2. Схема защиты с независимой характеристикой
- •4.5.2. Схемы с питанием оперативных цепей защиты от блоков питания
- •4.5.3. Схема защиты с использованием энергии заряженного конденсатора
- •4.7. Область применения мтз
- •5. Токовые отсечки
- •5.1. Принцип действия
- •5.2. Схемы отсечек
- •5.3. Отсечки мгновенного действия на линиях с односторонним питанием
- •5.3.1. Ток срабатывания отсечки
- •5.3.2. Зона действия отсечки
- •5.3.3. Время действия отсечки
- •5.4. Неселективные отсечки
- •5.5. Отсечки на линиях с двусторонним питанием
- •Токовая направленная защита
- •7.1. Необходимость токовой направленной защиты
- •7.3. Схема и принцип действия токовой направленной защиты
- •7.4. Схемы включения реле направления мощности
- •7.4.1. Требования к схемам включения
- •7.4.2. 90 И 30 схемы
- •7.4.3. Работа реле, включенных по 90 и 30 схемам
- •7.5. Блокировка максимальной направленной защиты при замыканиях на землю
- •7.6. Выбор уставок защиты
- •7.6.1. Ток срабатывания пусковых реле
- •7.6.2. Выдержка времени защиты
- •7.6.3. Мертвая зона
- •7.7. Токовые направленные отсечки
- •7.9. Оценка токовых направленных защит
- •8. Дифференциальная защита линий
- •8.1. Назначение и виды дифференциальных защит
- •8.2. Продольная дифференциальная защита
- •8.2.1. Принцип действия защиты
- •8.2.2. Токи небаланса в дифференциальной защите
- •8.2.3. Принципы выполнения продольной дифференциальной защиты
- •8.2.4. Комплект продольной дифференциальной защиты типа дзл
- •8.2.5. Оценка продольной дифференциальной защиты
- •8.3. Поперечная дифференциальная защита параллельных линий
- •8.3.1. Общие сведенья
- •8.3.2. Токовая поперечная дифференциальная защита
- •8.3.2.1. Принцип действия защиты
- •8.3.2.2. Мертвая зона защиты
- •8.3.3.2. Автоматическая блокировка защиты
- •8.3.3.3. Зона каскадного действия
- •8.3.3.4. Мертвая зона по напряжению
- •8.3.3.5. Схема направленной поперечной дифференциальной защиты
- •8.3.3.6. Выбор уставок направленной поперечной дифференциальной защиты
- •8.3.3.6.1. Ток срабатывания
- •8.3.3.6.2. Ток небаланса
- •8.3.3.6.3. Чувствительность защиты
- •8.3.3.7. Оценка направленных поперечных дифференциальных защит
- •9. Защита трансформаторов и автотрансформаторов
- •9.1. Виды повреждений трансформаторов и типы используемых защит
- •9.1.1. Повреждения трансформаторов и защиты от них
- •9.1.2. Ненормальные режимы трансформаторов и защита от них
- •9.2. Дифференциальная защита трансформаторов
- •9.2.1. Назначение и принцип действия дифференциальной защиты
- •9.2.2. Особенности дифференциальной защиты трансформаторов
- •9.2.3. Меры по выравниванию вторичных токов
- •9.2.3.1. Компенсация сдвига токов i1 и i2 по фазе
- •9.2.3.2. Выравнивание величин токов i1 и i2
- •9.2.4. Токи небаланса в дифференциальной защите
- •9.2.4.1. Общие сведенья
- •9.2.4.2. Причины повышенного тока небаланса в дифференциальной защите трансформаторов и автотрансформаторов
- •9.2.4.3. Расчет тока небаланса
- •9.2.4.4. Меры для предупреждения действия защиты от токов небаланса
- •9.2.4.5. Токи намагничивания силовых трансформаторов и автотрансформаторов при включении их под напряжение
- •9.2.5. Схемы дифференциальных защит
- •9.2.5.1. Дифференциальная токовая отсечка
- •9.2.5.2. Дифференциальная защита с токовыми реле, включенными через бнт
- •9.2.5.2.1. Общие сведенья
- •9.2.5.2.2. Варианты схем включения обмоток реле рнт
- •9.2.5.2.3. Расчет уставок дифференциальной защиты на реле рнт-565
- •9.2.5.3. Дифференциальная защита с реле имеющим торможение
- •9.2.5.3.1. Общие сведенья
- •9.2.5.3.2. Характеристика реле с торможением
- •9.2.6. Оценка дифференциальных защит трансформаторов
- •9.3. Токовая отсечка трансформаторов
- •9.4. Газовая защита
- •9.4.1. Принцип действия и устройство газового реле
- •9.4.2. Оценка газовой защиты
- •9.5. Защита от сверхтоков
- •9.5.1. Назначение защиты от сверхтоков
- •9.5.2. Максимальная токовая защита трансформаторов
- •9.5.2.1. Защита 2-х обмоточных понизительных трансформаторов
- •9.5.2.2. Защита трансформаторов с расщепленной обмоткой нижнего напряжения, или работающих на две секции шин
- •9.5.2.3. Защита трехобмоточных трансформаторов
- •9.5.2.3.1. Защита трехобмоточных трансформаторов при отсутствии питания со стороны обмотки среднего напряжения
- •9.5.2.3.2. Защита трехобмоточных трансформаторов, имеющих 2-х и 3-х стороннее питание
- •9.6.3. Защита от перегрузки трехобмоточных трансформаторов
- •9.6.4. Защита от перегрузки автотрансформаторов
- •П1.1.3. Типы защит
- •П1.2. Защита от многофазных кз
- •П1.3. Защита от перегрузки
- •П1.4. Защита минимального напряжения
- •16.12. Автоматика ачр
- •16.11. Автоматика уров(Устройство резервирования при отказе выключателя)
- •16.9 Автоматика авр.
- •Общие требования к авр
- •Принцип действия
- •16.8 Защита низковольтных электродвигателей.
7.3. Схема и принцип действия токовой направленной защиты
Токовая направленная защита представляет собой МТЗ, дополненную реле направления мощности. Однофазная принципиальная схема ТНЗ представлена на рис. 7.3.1.
Рис. 7.3.1
Пусковой орган защиты: токовое реле КА.
Орган направления: реле направления мощности KW.
Орган времени: реле времени КТ.
Работа схемы: при КЗ на защищаемой линии реле KW замыкает свои контакты, а при КЗ на смежных линиях – нет. В нормальном режиме при направлении потока мощности от шин в линию реле KW может замыкать свои контакты, однако срабатывание защиты должно предотвращаться токовым реле КА, поэтому токовые реле должны быть отстроены от токов нагрузки. В тех случаях, когда токовые реле по условиям чувствительности не удаётся отстроить от максимальной нагрузки, применяется блокировка от реле минимального напряжения KV (рис. 7.3.2).
Рис. 7.3.2
Сети с изолированной нейтралью
ТНЗ устанавливается на двух одноименных фазах во всей сети.
Сети с глухозаземленной нейтралью
Защита устанавливается на трех фазах. Если защита служит для действия только при междуфазных КЗ – на двух фазах.
ТНЗ выполняются как на постоянном, так и на переменном оперативном токе. Двухфазная схема на переменном оперативном токе представлена на рис. 7.3.3.
Схема выполнена с дешунтированием катушки отключения, с токовыми пусковым органом и промежуточными реле KL1,KL2 с мощными переключающими контактами.
Схема должна быть дополнена устройствами, контролирующими исправность цепей напряжения.
Рис. 7.3.3
Рис. 7.3.3 (продолжение)
7.4. Схемы включения реле направления мощности
7.4.1. Требования к схемам включения
Реле KW включается, как правило, на фазный ток и фазное или междуфазное напряжение. Сочетание фаз тока и напряжения, питающего реле, называемое схемой включения, должно быть таким, чтобы реле правильно определяло знак мощности КЗ при всех возможных случаях и видах повреждений и чтобы к нему подводилась наибольшая мощность SР:
SP= UPIPsin(–Р), (7.10)
где – угол внутреннего сдвига реле.
Мощность SP может быть недостаточна для действия реле, при КЗ близких к месту установки реле снижается напряжение UP или при неблагоприятном значении угла Р – sin(–Р) 0. Отсюда вытекают следующие требования к схемам включения
1. Реле должно включаться на такое напряжение, которое при близких КЗ не снижается до нуля.
2. UP и IP, подводимые к реле, должны подбираться так, чтобы угол сдвига между ними Р в условиях КЗ не достигал значений, при которых SP на зажимах реле 0.
7.4.2. 90 И 30 схемы
В современных схемах ТНЗ применяется включение реле направления мощности по так называемым 90 и иногда 30 схемам.
На рис. 7.4.1 приведена принципиальная схема максимальной направленной защиты с двумя пусковыми органами: тока и минимального напряжения и однофазными реле направления мощности, включенными по 90 схеме.
На рис. 7.4.2 представлена принципиальная схема максимальной направленной защиты с токовым пусковым органом и трехфазным реле направления мощности, включенным по 30 схеме.
Таблица 7.1
|
90 схема |
30 схема |
|||
Реле |
IP |
UP |
IP |
UP |
|
1 |
IA |
UBC |
IA |
UAC |
|
2 |
IB |
UCA |
IB |
UBA |
|
3 |
IC |
UAB |
IC |
UCB |
На рис. 7.4.3 и 7.4.4 представлены векторные диаграммы для 90 и 30 схемам соответственно.
Рис. 7.4.3
Названия
схем условны – их именуют по углам Р
между UP
и IP
в симметричном трехфазном режиме при
условии, что угол сдвига фаз между
фазными током и напряжением равен нулю:
(чисто активная нагрузка).