
- •Оглавление
- •Введение
- •1. Основные понятия и определения
- •2. Равновесная термодинамика
- •3. Отклонения от равновесия – термодинамический подход
- •4. Термодинамические основы описания неравновесных систем
- •4.1. Принцип локального равновесия
- •4.2. Линейная термодинамика – первый закон Онзагера
- •4.3. Линейная термодинамика – определение термодинамических сил, 2-ой и 3-ий законы Онзагера
- •4.4. Линейная термодинамика – диффузионные задачи
- •4.5 Линейная термодинамика – принцип Пригожина
- •5. Область нелинейных законов – универсальный критерий эволюции систем
- •6. Самоорганизация и диссипативные структуры
- •6.1. Увеличение степени порядка в неравновесных системах
- •6.2. Самоорганизация – эффект Бенара
- •6.3. Самоорганизация – эффект Бенара.
- •6.3. Самоорганизация – эффект Тейлора
- •6.4. Самоорганизация – реакция Белоусова-Жаботинского
- •6.5. Диссипативные структуры – свойства, классификация, условия существования
- •7. Нелинейная термодинамика – динамические модели процессов с одной переменной
- •7.1. Динамические уравнения
- •Динамические уравнения процессов с одной переменной
- •7.2. Эволюция систем – метод потенциала
- •7.3. Автокатализ, динамика популяций
- •7.4. Автокатализ с ветвлением, бифуркации – неравновесные фазовые переходы
- •7.5. Ангармонический осциллятор – нарушение временной симметрии
- •7.6. Эволюция систем – анализ динамической функции
- •8. Нелинейная термодинамика –динамические модели процессов с двумя переменными
- •8.1. Точечные конечные состояния, классификация, фазовые портреты, эволюция систем
- •8.2. Предельные циклы
- •9. Общие вопросы устойчивости нелинейных систем
- •9.1. Устойчивость по траектории
- •9.2. Орбитальная устойчивость
- •9.3. Структурная устойчивость
- •10. Теория катастроф – взгляд со стороны
- •10.1. Катастрофы и анализ структурной устойчивости
- •10.2. Катастрофа «складка»
- •10.3. Катастрофа «сборка»
- •11. Активные среды
- •11.1. Бистабильные среды
- •11.2. Возбудимые среды
- •Библиографический список
- •Приложение Дополнительные темы: Устойчивость систем с n переменными. Критерии устойчивости. Функция Ляпунова.
- •Критерии устойчивости. Функция Ляпунова.
3. Отклонения от равновесия – термодинамический подход
Рассмотрим некоторую произвольную сложную систему, которая находится в состоянии термодинамического равновесия. Любые изменения в системе, в том числе эволюция, приводящая к появлению упорядоченных структур, могут происходить только при условии, что она находится в неравновесном состоянии, так как состояние равновесия является устойчивым и конечным в ряду последовательных состояний системы. Поэтому выведем систему из состояния равновесия и проследим за ее дальнейшим поведением (эволюцией), которое, что вполне естественно, будет зависеть от величины отклонения. При описании системы с помощью совокупности произвольных макроскопических параметров ai ее состояние с разной степенью отклонения от положения равновесия - δai - можно представить с помощью схемы, которая носит по имени ее автора название диаграммы Бокштейна. Диаграмма Бокштейна представлена на рис. 3.1.
Рис.3.1. Диаграмма Бокштейна: термодинамические способы описания систем в зависимости от степени отклонения от равновесного состояния.
Степень отклонения от равновесия откладывается на диаграмме по горизонтальной оси, начало отсчета δai=0. Введем в качестве величины, которая, характеризует состояние системы, параметр A (это может быть температура, концентрация какого-либо компонента, фазовый состав и др.), который зависит от совокупности параметров ai
A = A(ai) (3.1)
Если δai = (ai – ai0) << ai , то А вблизи равновесного состояния можно разложить в ряд Тейлора
,
(3.2)
где А0 – значение параметра в равновесии, Аi , Aik – постоянные коэффициенты разложения.
Если
δai
очень мало, можно
ограничиться значением А0
и отбросить все
остальные члены ряда. Этому состоянию
соответствует область I
на
диаграмме. Область I может рассматриваться,
как сферу применения равновесной
термодинамики в качестве описания
исследуемых систем.
Если δai мало, но не настолько, чтобы можно было пренебрегать возмущениями первого порядка, то функцию A(ai) следует представить в следующем виде
,
(3.3)
который демонстрирует линейную связь параметра системы с величиной отклонения от равновесия. Следовательно, процессы в этой области – обозначим ее как «область II» - могут быть проанализированы с помощью линейных законов. К этой области относятся процессы, которые описываются с помощью линейной термодинамики (о ней еще пойдет речь, поэтому здесь мы не расшифровываем этот термин).
Дальнейший учет членов разложения в случаях, когда отклонения от равновесия еще больше, приводят к появлению нелинейных членов типа Aδaiδak и т.д. в зависимости A(ai) (область III). Это значит, что в данной области на описание процессов не распространяется принцип суперпозиции – сумма действий различных причин (влияния различных параметров) не пропорциональна сумме их вкладов. В этом случае для описания процессов в неравновесных системах используют принципы нелинейной термодинамики неравновесных процессов.
При дальнейшем росте δai , когда перестает выполняться неравенство δa i<< ai , невозможно представить величину А в виде сходящегося ряда. Отклонения от равновесия настолько велики, и процессы происходят настолько интенсивно, что величину параметра А (т.е. измеряемую величину любого параметра), характеризующую всю систему в целом или ее отдельную часть (элемент), невозможно описать однозначно (область IV). Рассмотрение процессов в этой области с точки зрения термодинамики встречается со значительными сложностями. Однако современные методы анализа нелинейных математических моделей позволяют решать отдельные задачи и в этой далекой от равновесия области.
Подобное разграничение процессов в значительной степени условно – сама величина отклонения от равновесия, полагаемая для одних случаев малой, может оказаться значительной в других. Однако такой подход позволяет расставить принципы описания по мере их усложнения в соответствии с основным критерием – степенью отклонения от равновесия. Рассмотрим последовательно возможные способы применения термодинамического описания при увеличении величины этого критерия.