
- •6. Биологические мембраны. Их строение и функции.
- •7.Белки – полимеры аминокислоты. Пептидная связь. Первичная структура белков.
- •8. Водородные связи между пептидными группами – основа вторичной структуры белков. Основные виды вторичных структур.
- •9. Третичная структура белка. Силы, поддерживающие третичную структуру. Глобулярные белки.
- •10. Четвертичная структура белков.
- •11.Функции белков в живых организмах.
- •12. Каталитическая функция белков. Особенности ферментов, отличающие их от небиологических катализаторов.
- •13. Структурная функция белков. Фибриллярные белки.
- •14. Нуклеотиды. Функции нуклеотидов в живых клетках.
- •15. Днк: строение полинуклеотидной цепи, двойная спираль. Принцип комплементарности. Репликация днк
- •16. Строение рнк. Транскрипция – синтез рнк на матрице днк. Регуляция транскрипции.
- •17. Матричные рнк – переносчики генетической информации. Генетический код.
- •18. Транспортные рнк. Активация аминокислот.
- •19. Рибосомные рнк. Строение и функции рибосом.
- •20. Трансляция – синтез белка на матрице рнк. Инициация, элонгация и терминация трансляции.
- •21. Цикл элонгации трансляции.
- •22. Клетка. Клеточная теория. Прокариоты и эукариоты.
- •23. Строение прокариотической клетки.
- •24. Ядро эукариотической клетки.
- •25. Клеточная мембрана, её строение и функции. Клеточные стенки.
- •26. Одномембранные органеллы цитоплазмы: эндоплазматическая сеть, аппарат Гольджи, лизосомы, пероксисомы.
- •27. Митохондрии, их строение и функции. Происхождение митохондрий.
- •28. Пластиды. Виды пластид, их функции. Внутреннее строение пластид.
- •29. Обмен веществ и превращение энергии в клетке. Автотрофные и гетеротрофные организмы. Фотоавтотрофы и хемоавтотрофы.
- •31. Цикл ди- и трикарбоновых кислот (цикл Сент-Дьёрди-Кребса).
- •32. Окислительное фосфорилирование в митохондриях.
- •33. Фотосинтез – образование органических веществ из неорганических за счёт энергии света. Световая стадия фотосинтеза, её локализация и продукты.
- •34. Темновая стадия фотосинтеза. Локализация в клетке. Исходные вещества и продукты темновой стадии. Общее уравнение фотосинтеза.
- •35. Клеточный цикл. Митоз как основной способ деления эукариотических клеток. Фазы митоза.
- •36. Половой процесс. Виды полового процесса.
- •37. Мейоз. Фазы мейоза. Биологический смысл мейоза.
- •38. Продукты мейоза в разных группах организмов. Чередование гаплоидной и диплоидной фазы в жизненных циклах.
- •39. Наследственность. Моногибридное скрещивание. Первый и второй законы Менделя.
- •40. Дигибридное скрещивание. Третий закон Менделя. Анализирующее скрещивание.
- •41. Взаимодействие неаллельных генов. Комплементация и эпистаз.
- •42. Сцепленное наследование. Хромосомная теория наследственности.
- •43. Генетическое определение пола. Наследование, сцепленное с полом.
5. Органические вещества: мономеры, промежуточные продукты обмена. Гомополимеры и гетерополимеры. Разнообразие органических веществ – основа разнообразия структур живых организмов. Органические соединения, органические вещества — класс химических соединений, в состав которых входит углерод (за исключением карбидов, угольной кислоты, карбонатов, оксидов углерода и цианидов). Основные классы органических соединений биологического происхождения — белки, липиды, углеводы, нуклеиновые кислоты — содержат, помимо углерода, преимущественно водород, азот, кислород, серу и фосфор. Но элементами, составляющими органические соединения, помимо углерода могут быть практически любые элементы. Мономеры— это низкомолекулярное вещество, образующее полимер в реакции полимеризации. Мономерами также называют повторяющиеся звенья (структурные единицы) в составе полимерных молекул. Мономеры различают по функциональности. Бифункциональными называют мономеры, имеющие две реакционноспособные функциональные группы. Трифункциональными - соответственно три и т.д. Монофункциональными мономеры быть не могут, так как такие вещества не способны к полимеризации, "обрывая" растущую полимерную цепь, но всё же могут использоваться для модификации молекулярной массы и молекулярно-массового распределения готового полимера и в качестве "активных разбавителей" для модификации технологических свойств реакционной смеси. Функциональность мономера не является постоянной величиной и зависит от условий проведения реакции.
органические соединения — самый обширный класс химических соединений. Многообразие органических соединений связано с уникальным свойством углерода образовывать цепочки из атомов, что в свою очередь обусловлено высокой стабильностью (то есть энергией) углерод-углеродной связи. Гомополимер — полимер, макромолекулы которого состоят из одинаковых по составу и строению повторяющихся структурных единиц (мономерных звеньев).
Повторяющиеся (мономерные) звенья макромолекулы имеют такой же химический состав, что и молекулы исходных компонент (мономеров), только для полимеров, полученных полимеризацией ненасыщенного или циклического мономера. Если же при получении макромолекул в ходе реакции выделяется низкомолекулярное соединение, например, при проведении поликонденсации, то повторяющееся звено отличается по составу от молекул мономера. Гетерополимеры — полимеры, молекулы которых состоят из нескольких разных типов мономеров. Этим они отличаются от гомополимеров, в состав которых входит единственный тип мономеров. К гетерополимерам относятся такие природные биополимеры, как белки, нуклеиновые кислоты, пептидогликан, гиалуроновая кислота и другие. Гетерополимеры бывают регулярными и нерегулярными. В регулярных гетерополимерах чередование звеньев подчиняется определенной закономерности, они выстроены в предсказуемом порядке: -А-В-А-В-А-В- или -А-А-В-А-А-В-А-А-В-, где А и В — разные типы мономеров. К нерегулярным гетерополимерам относятся природные белки и нуклеиновые кислоты - ДНК и РНК. Чередование мономеров, которых в белках более 20 типов, а в нуклеиновых кислотах - по 4 основных типа, не подчиняется определенным закономерностям. Искусственным путем могут быть получены белки и нуклеиновые кислоты, представляющие собой гомополимеры. В природных молекулах нуклеиновых кислот могут встречаться гомополимерные участки. Нерегулярная природа нуклеиновых кислот позволяет им выполнять функции хранения и реализации генетической информации, а нерегулярная структура белков — приобретать сложную и разнообразую конформацию и выполнять множество разных биологических функций.
6. Биологические мембраны. Их строение и функции.
Одной из основных особенностей всех эукариотических клеток является изобилие и сложность строения внутренних мембран. Мембраны отграничивают цитоплазму от окружающей среды, а также формируют оболочки ядер, митохондрий и пластид. Они образуют лабиринт эндр-плазматического ретикулума и уплощенных пузырьков в виде стопки, составляющих комплекс Гольджи. Мембраны образуют лизосомы, крупные и мелкие вакуоли растительных и грибных клеток, пульсирующие вакуоли простейших. Все эти структуры представляют собой компартменты (отсеки), предназначенные для тех или иных специализированных процессов и циклов. Следовательно, без мембран существование клетки невозможно.
Плазматическая мембрана, или плазмалемма, — наиболее постоянная, основная, универсальная для всех клеток мембрана. Она представляет собой тончайшую (около 10 нм) пленку, покрывающую всю клетку. Плазмалемма состоит из молекул белков и фосфолипидов.
М
олекулы
фосфолипидов расположены в два ряда —
гидрофобными концами внутрь, гидрофильными
головками к внутренней и внешней водной
среде. В отдельных местах бислой (двойной
слой) фосфолипидов насквозь пронизан
белковыми молекулами (интегральные
белки). Внутри таких белковых молекул
имеются каналы — поры, через которые
проходят водорастворимые вещества.
Другие белковые молекулы пронизывают
бислой липидов наполовину с одной или
с другой стороны (полуинтегральные
белки). На поверхности мембран
эукариотических клеток имеются
периферические белки. Молекулы липидов
и белков удерживаются благодаря
гидрофильно-гидрофобным взаимодействиям.
Схема строения мембраны: а — трехмерная модель; б — плоскостное изображение; 1 — белки, примыкающие к липидному слою (А), погруженные в него (Б) или пронизывающие его насквозь (В); 2 — слои молекул липидов; 3 — гликопротеины; 4 — гликолипиды; 5 —гидрофильный канал, функционирующий как пора.
В состав плазматической мембраны эукариотических клеток входят также полисахариды. Их короткие, сильно разветвленные молекулы ковалентно связаны с белками, образуя гликопротеины, или с липидами (гликолипиды). Содержание полисахаридов в мембранах составляет 2-—10% по массе. Полисахаридный слой толщиной 10—20 нм, покрывающий сверху плазмалемму животных клеток, получил название гликокаликс.
Свойства и функции мембран. Все клеточные мембраны представляют собой подвижные текучие структуры, поскольку молекулы липидов и белков не связаны между собой ковалентными связями и способны достаточно быстро перемещаться в плоскости мембраны. Благодаря этому мембраны могут изменять свою конфигурацию, т. е. обладают текучестью.
Мембраны — структуры очень динамичные. Они быстро восстанавливаются после повреждения, а также растягиваются и сжимаются при клеточных движениях.
Мембраны разных типов клеток существенно различаются как по химическому составу, так и по относительному содержанию в них белков, гликопротеинов, липидов, а следовательно, и по характеру имеющихся в них рецепторов. Каждый тип клеток поэтому характеризуется индивидуальностью, которая определяется в основном гликопротеинами. Разветвленные цепи гликопротеинов, выступающие из клеточной мембраны, участвуют в распознавании факторов внешней среды, а также во взаимном узнавании родственных клеток. Например, яйцеклетка и сперматозоид узнают друг друга по гликопротеинам клеточной поверхности, которые подходят друг к другу как отдельные элементы цельной структуры. Такое взаимное узнавание — необходимый этап, предшествующий оплодотворению.
Подобное явление наблюдается в процессе дифференцировки тканей. В этом случае сходные по строению клетки с помощью распознающих участков плазмалеммы правильно ориентируются относительно друг друга, обеспечивая тем самым их сцепление и образование тканей. С распознаванием связана и регуляция транспорта молекул и ионов через мембрану, а также иммунологический ответ, в котором гликопротеины играют роль антигенов. Сахара, таким образом, могут функционировать как информационные молекулы (подобно белкам и нуклеиновым кислотам). В мембранах содержатся также специфические рецепторы, переносчики электронов, преобразователи энергии, ферментные белки. Белки участвуют в обеспечении транспорта определенных молекул внутрь клетки или из нее, осуществляют структурную связь цитоскелета с клеточными мембранами или же служат в качестве рецепторов для получения и преобразования химических сигналов из окружающей среды.
Важнейшим свойством мембраны является также избирательная проницаемость. Это значит, что молекулы и ионы проходят через нее с различной скоростью, и чем больше размер молекул, тем меньше скорость прохождения их через мембрану. Это свойство определяет плазматическую мембрану как осмотический барьер. Максимальной проникающей способностью обладает вода и растворенные в ней газы; значительно медленнее проходят сквозь мембрану ионы. Диффузия воды через мембрану называется осмосом.
Существует несколько механизмов транспорта веществ через мембрану.
Диффузия —проникновение веществ через мембрану по градиенту концентрации {из области, где их концентрация выше, в область, где их концентрация ниже). Диффузный транспорт веществ (воды, ионов) осуществляется при участии белков мембраны, в которых имеются молекулярные поры, либо при участии липидной фазы (для жирорастворимых веществ).
При облегченной диффузии специальные мембранные белки-переносчики избирательно связываются с тем или иным ионом или молекулой и переносят их через мембрану по градиенту концентрации.
Активный транспорт сопряжен с затратами энергии и служит для переноса веществ против их градиента концентрации. Он осуществляется специальными белками-переносчиками, образующими так называемыеионные насосы. Наиболее изученным является Na- / К--насос в клетках животных, активно выкачивающих ионы Na+ наружу, поглощая при этом ионы К-. Благодаря этому в клетке поддерживается большая концентрация К- и меньшая Na+ по сравнению с окружающей средой. На этот процесс затрачивается энергия АТФ.
В результате активного транспорта с помощью мембранного насоса в клетке происходит также регуляция концентрации Mg2-и Са2+.
В процессе активного транспорта ионов в клетку через цито-плазматическую мембрану проникают различные сахара, нуклеотиды, аминокислоты.
Макромолекулы белков, нуклеиновых кислот, полисахаридов, липопротеидные комплексы и др. сквозь клеточные мембраны не проходят, в отличие от ионов и мономеров. Транспорт макромолекул, их комплексов и частиц внутрь клетки происходит совершенно иным путем — посредством эндоцитоза. При эндоцитозе (эндо... — внутрь) определенный участок плазмалеммы захватывает и как бы обволакивает внеклеточный материал, заключая его в мембранную вакуоль, возникшую вследствие впячивания мембраны. В дальнейшем такая вакуоль соединяется с лизосомой, ферменты которой расщепляют макромолекулы до мономеров.
Процесс, обратный эндоцитозу, — экзоцитоз (экзо... — наружу). Благодаря ему клетка выводит внутриклеточные продукты или непереваренные остатки, заключенные в вакуоли или пузырьки. Пузырек подходит к цитоплазматической мембране, сливается с ней, а его содержимое выделяется в окружающую среду. Гак выводятся пищеварительные ферменты, гормоны, гемицеллюлоза и др.
Таким образом, биологические мембраны как основные структурные элементы клетки служат не просто физическими границами, а представляют собой динамичные функциональные поверхности. На мембранах органелл осуществляются многочисленные биохимические процессы, такие как активное поглощение веществ, преобразование энергии, синтез АТФ и др.
Функции биологических мембран следующие:
Отграничивают содержимое клетки от внешней среды и содержимое органелл от цитоплазмы.
Обеспечивают транспорт веществ в клетку и из нее, из цитоплазмы в органеллы и наоборот.
Выполняют роль рецепторов (получение и преобразование сигналов из окружающей среды, узнавание веществ клеток и т. д.).
Являются катализаторами (обеспечение примембранных химических процессов).
Участвуют в преобразовании энергии.