
- •Общая патология
- •Введение
- •Стадии болезни и ее исходы.
- •Этиология, общий патогенез и роль реактивности
- •Острая недостаточность сердца
- •Роль реактивност организма в патологии
- •1. Абсолютная или естественная резистентность.
- •2. Относительная резистентность.
- •Действие на организм низких температур.
- •Отморожения.
- •Замерзание
- •Простуда
- •Действие на организм высокой температуры
- •Ожоговая болезнь
- •Перегревание
- •Действие радиации
- •Первичные эффекты ионизирующего излучения
- •Влияние ионизирующей радиации на клетки.
- •Влияние радиации на уровне тканей
- •Действие радиации на уровне организма
- •Принципы предупреждения и лечения лучевой болезни.
- •Действие на организм электрического тока.
- •Влияние физических параметров электрического тока на электротравму.
- •Влияние состояния организма и факторов внешней среды на электротравму.
- •Электрический шок
- •Профилактика и терапия электротравмы.
- •Действие на организм измененного барометрического давления гипербария.
- •Гипобария.
- •Баротравма.
- •Действия ударной волны.
- •Действие ударной волны на организм.
- •Действие на организм изменений парциального давления кислорода.
- •Влияние длительного действия линейных и радиальных ускорений. Перегрузки.
- •Кинетозы.
- •Пространственная дезориентировка
- •Жизнедеятельности организма.
- •Патофизиология наследственных болезней.
- •Этиология наследствкенных заболеваний
- •Методы изучения наследственной патологии
- •Основы популяционной генетики и экогенетики.
- •Патология клетки. Повреждение.
- •Дистрофия.
- •Паренхиматозные дистрофии.
- •Патология восприятия сигналов.
- •Патология клеточных органелл.
- •Патофизиология повреждения клетки.
- •Специфические проявления.
- •Неспецифические (или общие) проявления.
- •I. Фаза начальных изменений.
- •2. Фаза обратимых изменений.
- •3. Фаза необратимых изменений.
- •Механизмы адаптации клеток к повреждению.
- •Типовые формы повреждения клетки.
- •Патология клеточных популяций. Движение клеток и их патология.
- •Внутренние движения.
- •Перемещение всей клетки в окружающей среде
- •2. Общая характеристика структуры микроциркуляторного русла.
- •3. Регуляция микроциркуляторного кровотока.
- •6. Нарушения коагуляции и тромбоэмболизм.
- •7. Изменение скорости кровотока.
- •8. Изменение формы и местонахождения эндотелиальных клеток.
- •9. Нарушение проницаемости стенок сосудов.
- •10. Прилипание форменных элементов крови к эндотелию.
- •11. Диапедез форменных элементов
- •12. Микрокровоизлияния.
- •13. Реакция тучных клеток на патологические стимулы.
- •14. Микроциркуляция и нейродистрофический процесс (синдром регенераторно-пластической недостаточности).
- •15. Недостаточность лимфообращения.
- •16. Нарушения обмена жидкостью между кровью и тканями. Местные отеки.
- •Нарушения периферического кровообращения: Артериальная и венозная гиперемия, ишемия, стаз.
- •I.Артериальная гиперемия.
- •Изменение гемо- и лимфодинамики и клинические проявления артериальной гиперемии.
- •Значение артериальной гиперемии для организма.
- •II. Венозная гиперемия
- •Гемодинамика и клинические проявления венозной гиперемии.
- •Значение венозной гиперемии для организма.
- •III. Ишемия
- •Гемодинамика и клинические признаки ишемии.
- •Последствия и исходы ишемии.
- •Тромбоз
- •Венозный тромбоз:
- •Эмболия
- •Типы эмболии по материалу, переносимому током крови
- •При неадекватно проводимой ивл в условиях гипербарической оксигенации.
- •Жировая эмболия.
- •Острое и хроническое воспаление
- •Хронической воспаление.
- •Иммунопатологические процессы.
- •Классификация и характеристика аллергенов:
- •Центральные и периферические органы иммунной системы.
- •Клетки иммунной системы.
- •Макрофаги и дендритные клетки
- •Гипоксия
- •Классификация гипоксических состояний.
- •Нарушение функции органов и систем.
- •I. Срочная адаптация к гипоксии.
- •Гипероксия: её роль в патологии. Гипербарическая оксигенация, патофизиологические механизмы.
- •Патофизиология инфекционного процесса.
- •Опухолевый рост: общая характеристика.
- •Этиология опухолей
- •Стадии развития и общий патогенез опухолевого роста.
- •Взаимоотношение опухоли и организма
- •Системные изменения в организме при развитии опухолей
- •Антибластомная резистентность организма
- •Экстремальные состояния. Учение г. Селье о стрессе.
- •Генерализованный адаптационный синдром (гас).
- •Травматический шок
- •Патогенез травматического шока.
- •Неадекватная импульсация из поврежденных тканей.
- •Местная крово- и плазмопотеря.
- •Нарушения обмена веществ.
- •Поступление в кровь биологически активных веществ.
- •Нарушения функций поврежденных органов
- •Коллапс
- •Обоснование терапии.
- •Патофизиология энергетического обмена.
- •Основной обмен и его изменения при патологии
- •Нарушение водно-электролитного обмена
- •Принципы классификации и основные виды расстройства водного обмена.
- •Избыточное накопление воды в организме (гипергидротация, гипергидрия).
- •Обезвоживание организма.
- •Отеки, их патогенетические факторы.
- •Патофизиология некоторых клинических форм патологии обмена воды и электролитов
- •Нарушения обмена электролитов
- •Патология кислотно-основного обмена.
- •Показатели кислотно-основного равновесия и газов в крови в норме
- •Нарушения углеводного обмена
- •Нарушение усвоения углеводов в организме.
- •Общие признаки синдромов нарушения всасывания углеводов:
- •Гипогликемия.
- •1. Спонтанный сахарный диабет:
- •2. Вторичный диабет
- •3. Нарушение толерантности к глюкозе (латентный диабет)
- •4. Диабет беременных (нарушение толерантности к глюкозе во время беременности).
- •Патофизиология липидного обмена
- •6) Участие в усвоении жирорастворимых витаминов (а, д, е, к).
- •Процессы усвоения и всасывания липидов, их нарушения.
- •Алиментарная жировая недостаточность.
- •Нарушения механизмов транспорта липидов.
- •Общий патогенез атеросклероза.
- •Вторичное ожирение.
- •Стеатоз (ожирение печени).
- •Нарушения межуточного обмена липидов.
- •Патология белкового обмена
- •Потребности в белках.
- •Потребность в белках.
- •Содержание белка в некоторых пищевых продуктах г/100 г
- •Сыры 20-35
- •III. Обмен белков в организме
- •IV. Строение и классификация белков.
- •Биологические функции белков:
- •Нарушения белкового обмена.
- •Алиментарный маразм. (атрексия, кахексия, чрезмерное исхудание).
- •Квашиоркор
- •Следующий этап метаболизма белков - переваривание и всасывание в желудочно-кишечном тракте.
- •Нарушения регуляции синтеза белка (нейроэндокринной и субстратной)
- •Кортикостироиды (кортизол, кортикостерон):
- •Инсулин:
- •5.Глюкогон:
- •Увеличение синтеза белка наблюдается при:
- •Используются также и ингибиторы синтеза белка:
- •Нарушение синтеза белка, связанные с патологическими мутациями в генах.
- •Фенилкетонурия (болезнь Феллинга).
- •Наследственная тирозинемия.
- •Алкаптонурия.
- •Гистидинемия.
- •Гомоцистеинурия.
- •Аргининянтарная аминоацидурия.
- •Синдром Леша-Нихена.
- •Первичные гипопротеинемии.
- •Вторичные гипопротеинемии.
- •Патология нуклеинового обмена.
- •Патология обмена пуринов
- •Этиология подагры
- •Патогенез подагры
- •Другие нарушения пуринового обмена
- •Нарушения обмена пиримидиновых оснований
- •Патофизиология красной крови Анемии.
- •Анемии. Определение. Понятия. Принципы классификации.
- •Острая постгеморрагическая анемия.
- •Хроническая постгеморрагическая анемия.
- •Железодефицитная анемия.
- •Этиология железодефицитной анемии.
- •Этиопатогенетическая классификация железодефицитных анемий.
- •Клинико-гематологические проявления железодефицитной анемии.
- •Анемии, связанные с дефицитом витамина в12 (мегалобластические).
- •Этиология в12 – дефицитной анемии.
- •Анемии, связанные с дефицитом фолиевой кислоты.
- •Этиология фолиеводефицитной анемии.
- •Апластические анемии и синдром костномозговой недостаточности.
- •Этиопатогеническая классификация апластических анемий.
- •Конституционная апластическая анемия (анемия Фанкони).
- •Анемии, связанные с нарушением синтеза и утилизации порфиринов.
- •Наследственные анемии, связанные с нарушением синтеза порфиринов.
- •Приобретенные анемии, связанные с нарушением синтеза порфиринов.
- •Гемолитические анемии.
- •Классификация гемолитических анемий.
- •Классификация гемолитических анемий (Идельсон л.И.).
- •Наследственный микросфероцитоз (болезнь Минковского-Шоффара).
- •Наследственные гемолитические анемии, связанные с нарушением активности ферментов эритроцитов.
- •Серповидноклеточная анемия (ска).
- •Талассемии.
- •Приобретенные гемолитические анемии.
- •I. Гемолитические анемии, связанные с воздействием антител (иммунные гемолитические анемии).
- •Гемолитическая болезнь новорожденного.
- •Патофизиология белой крови Лейкоцитозы.
- •Лейкемоидные реакции.
- •Лейкопении. Основные кинетические механизмы лейкопений.
- •Агранулоцитозы.
- •Гемобластозы
- •Этиология лейкозов.
- •Общий патогенез лейкозов.
- •Классификация лейкозов.
- •Клинико-морфологическая характеристика острых лейкозов.
- •Гематологическая картина острых лейкозов.
- •Стадии острого лейкоза.
- •Хронические лейкозы.
- •Хронический миелолейкоз.
- •Хронический лимфолейкоз.
- •Патология гемостаза
- •Геморрагические диатезы, определние понятия, классификация.
- •Тромбоцитопении.
- •Тромбоцитопатии.
- •Наследственные и врожденные формы
- •Наследственные нарушения коагуляционного гемлстаза.
- •Классификация
- •Группа 1. С изолированным нарушением внутреннего механизма формирования протромбиназной активности
- •Гемофилия а
- •Вазопатии (микротромбоваскулиты).
- •Автономные формы микротромбоваскулитов.
- •Другие нарушения гемостаза сосудистого и смешанного генеза
- •Синдром диссеминированного внутрисосудистового свертывания (двс-синдром)
- •Патофизиология сердечно-сосудистой системы
- •Висцеро-кардиальные рефлексы.
- •Кардио-висцеральные рефлексы.
- •Сердечно-сосудистая система в условиях патологии.
- •Процессы компенсации при заболеваниях сердца.
- •Кардиальные приспособительные механизмы
- •II. Изменение ритма сердца
- •Экстракардиальные приспособительные механизмы
- •Процессы повреждения сердца.
- •Патология пейсмекера и проводящей системы сердца.
- •Типовые нарушения ритма.
- •Синусовые аритмии.
- •Гетеротропные аритмии.
- •Экстраситолы.
- •Пароксизмальная тахикардия.
- •Мерцание предсердий.
- •Фибрилляция предсердий.
- •Фибрилляция желудочков.
- •Нарушения проводимости миокарда.
- •Основные патологические процессы в миокарде (поражение кардиомиоцитов).
- •Ишемия миокарда.
- •Токсическое повреждение миокарда.
- •Патология фиброзного скелета сердца. Клапанные пороки сердца.
- •Поражение митральных клапанов
- •Поражение трехстворчатого клапана.
- •Аортальные пороки.
- •Пороки клапанов легочной артерии.
- •Внутрисердечные и межсосудистые шунты.
- •Шунты со сбросом крови справа налево.
- •Легочное сердце.
- •Сердечная недостаточность.
- •Патофизиология сосудов.
- •Роль сосудистой системы в механизмах адаптации организма.
- •Роль сосудистой системы в патогенезе типических патологических процессах.
- •Патология сосудов.
- •Патология сосудистого тонуса.
- •Патологическая физиология системы дыхания
- •Легочное дыхание
- •Легочное дыхание в условиях патологии Процессы компенсации при патологии внешнего дыхания
- •Процессы повреждения аппарата дыхания
- •I. Поражение бронхов и респираторных структур легких
- •II. Поражение костно-мышечного каркаса грудной клетки и плевры:
- •III. Поражение дыхательной мускулатуры:
- •IV. Нарушение кровообращения в малом круге:
- •V. Нарушение процессов альвеолярно-капиллярной диффузии.
- •VI. Нарушение регуляции дыхания:
- •Одышка.
- •Патологическая физиология пищеварения
- •Пищеварительная система и адаптивные реакции.
- •Рефлексы желудочно-кишечного такта в физиологических условиях.
- •Рефлекторные влияния на желудочно-кишечный тракт в условиях патологии.
- •Пищеварительная система в условиях патологии. Процессы компенсации при патологии системы пищеварения.
- •Пищеварение при экстремальных воздействиях на организм.
- •Общие признаки нарушений деятельности пищеварительной системы.
- •Нарушения функций желудка
- •Патология печени
- •Роль печени в регуляции обмена веществ.
- •Белковый обмен.
- •Углеводный обмен.
- •Пигментный обмен.
- •Обмен гормонов.
- •Детоксикационная функция печени.
- •Общая этиология заболеваний печени.
- •Инфекционные факторы.
- •Токсические факторы.
- •Алиментарные факторы.
- •Иммуногенные повреждения.
- •Гемодинамические расстройства.
- •Факторы, механически препятствующие оттоку желчи.
- •Общий патогенез заболеваний печени .
- •Печеночные синдромы.
- •Цитолитический синдром.
- •Мезенхимально-воспалительный синдром синдром.
- •Холестатический синдром.
- •Синдром портальной гипертензии.
- •Синдром печеночной недостаточности.
- •Желтухи.
- •Патофизиология гипербилирубинемии (желтух).
- •Патофизиология мочевыделительной системы.
- •Механизмы реабсорбции и секреции в почечных канальцах.
- •Общие механизмы нарушений канальцевой реабсорбции и секреции.
- •Транспорт электролитов в нефроне.
- •Мочевой синдром.
- •Болевой синдром.
- •Синдром артериальной гипертензии.
- •Патофизиология нейроэндокринной системы
- •Патофизиология эндокринной системы
- •Синтез гормонов
- •Механизм действия гормонов на клетки-эффекторы.
- •Механизм действия тиреоидных гормонов.
- •Строение и функция эндокринной системы
- •Эндокринная система и адаптивные реакции организма
- •Эндокринная система в условиях патологии. Процессы компенсации при патологии эндокринной системы
- •Патологии эндокринной системы
- •Патология гипофиза и гипофиззависимых желез.
- •Классификация надпочечниковой недостаточности:
- •Патологическая физиология гипофизнезависимых желез.
- •Патология тимуса
- •Патофизиология нервной системы
- •Типовые патологические процессы в нервной системе
Действие ударной волны на организм.
Тело животного или человека деформируется в направлении ударной волны- Деформация носит затухающий характер и по времени связана с перегрузкой, Наибольшие изменения при данной патологии отмечаются со стороны центральной нервной системы. Специально проведенные эксперименты показывают, что при действии воздушной ударной волны на незакрепленную голову в полости черепа возникает избыточное давление. Величина избыточного давления в полости черепа всегда меньше величины избыточного давления в ударной волне. Давление в полости черепа функционально связано с давлением отражения и постоянно составляет 1/4 его величины. Именно давление отражения оказывает влияние на изменение внутричерепного давления. Это объясняется малыми размерами головы и ее обтекаемой формой. Отражение ударной волны происходит на небольшой площади свода черепа, по размерам близкой к точке, которая в момент взаимодействия оказывается под прямым углом к направлению распространения ударной волны, это давление вызывает деформацию (прогиб) костей свода черепа, сопровождающуюся повышением избыточного давления в полости, В результате происходит повреждение головного мозга.
Таким образом, объектом повреждения оказывается прежде всего нервная система. Взрывы, с одной стороны, вызывают различные психогенные синдромы (приступы двигательного возбуждения, супорозные состояния и т.п.), с другой - органические повреждения центральной нервной системы и других органов.
Основными повреждениями от действия воздушной ударной волны оказываются: ушибы сердца, кровоизлияния в гортани, трахее и легких, разрывы легких; эмфизема, пневмоторакс, разрывы органов брюшной полости, кровоизлияния в придаточных пазухах носа и в среднем ухе, разрывы барабанных перепонок и повреждения среднего уха, кровоизлияния и размягчения ткани головного мозга, кровоизлияния в оболочки спинного мозга и в корешки спинномозговых нервов, переломы костей конечностей. На основании наблюдений за пораженными считают, что все эти проявления могут сочетаться и создавать разнообразные картины контузионных синдромов. Нарушение внешнего дыхания как следствие повреждения легких приводит к генерализованной гипоксии тканей организма. Явления же сосудистой недостаточности развиваются редко. У животных и человека при этой патологии редко развивается травматический шок.
Профилактика сводится к удалению людей из зоны вероятного поражения и защите от самой ударной волны с помощью инженерных сооружений. Лечение, в конечном счете, симптоматическое и определяется характером и тяжестью повреждений.
Действие на организм изменений парциального давления кислорода.
1 декабря 1848 года, в пятницу, а совсем не в четверг (согласно утверждению Р. Киплинга), пароход Лондондери отправился из Ливерпуля в Слиго с двумястами пассажиров, по большей части эмигрантов. Во время плавания случилась буря и капитан велел всем пассажирам сойти с палубы. Общая каюта для пассажиров третьего класса имела длины 18 футов, ширины - 11, высоты 7. В этом тесном пространстве и скучились пассажиры; им было бы только очень тесно, если бы люки оставались открытыми; но капитан велел закрыть их, и по неизвестной причине велел затянуть наглухо клеенкой вход в каюту. Несчастные пассажиры, таким образом, должны были дышать все одним и тем же, не возобновляющимся воздухом. Это скоро сделалось невыносимым. Последовала страшная сцена насилия и безумия, при стонах умирающих и проклятиях более сильных: она прекратилась лишь после того, когда одному из пассажиров удалось силой вырваться на палубу и призвать лейтенанта, перед которым открылось страшное зрелище: семьдесят два из пассажиров уже умерли, и многие умирали; их члены были судорожно скорчены, и кровь выступала у них из глаз, из ноздрей и ушей. Спустя 152 года история повторилась и 19 июня 2000 г. в другом английском порту - Дувре таможенная служба обнаружила в кузове голландского грузовика в наглухо закрытом контейнере, предназначенном для перевозки помидоров, 58 трупов и двух живых нелегальных эмигрантов из страны.
Конечно, приведенные случаи являются вопиющими, из ряда вон выходящими. Однако та же причина обусловливает бледность людей выходящих из церкви, набитой народом; усталость после нескольких часов, проведенных в театре, в концертном зале, лекционной аудитории, во всякой дурно проветренной комнате. При этом чистый воздух приводит к исчезновению всех неблагоприятных проявлений. Древние не представляли себе эту причину; да и ученые шестнадцатого и семнадцатого столетий плохо в ней ориентировались. Толчком к ее расшифровке послужили труды Престлея, который открыл, что кислород, содержащийся в атмосферном воздухе, имеет свойство превращать венозную кровь в артериальную. Лавуазье довершил это открытие и основал химическую теорию дыхания. Гудвин (1788) приложил новые воззрения к асфиксии (удушению) и доказал рядом опытов, что когда атмосфера остается неизменной, неминуемо наступает смерть. Биша заключил из множества разительных опытов, что между дыханием, кровообращением и нервной деятельностью существует тесная связь; он показал, что прилив венозной крови к мозгу останавливает его деятельность и затем деятельность сердца. Лигалуа распространил эти наблюдения и на спинной мозг. Клод Бернар доказал, что венозная кровь не ядовита, хотя лишена свойства для поддержания жизни.
ГИПОКСИЯ (hypoxia; греч. - под, ниже, мало + лат. охуgenium - кислород) или "кислородное голодание", "кислородная недостаточность" - типовой патологический процесс, который вызывают недостаточное поступление кислорода в ткани и клетки организма или нарушения его использования при биологическом окислении.
Наряду с гипоксией выделяют "аноксию" - т.е. полное отсутствие кислорода или полное прекращение окислительных процессов (реально такое состояние не встречается) и "гипоксемию" - пониженное напряжение и содержание кислорода в крови.
По причинам гипоксии она может быть экзогенной, обусловленной внешними факторами (это прежде всего недостаток кислорода во вдыхаемом воздухе - гипоксическая гипоксия, и наоборот, избыток кислорода во вдыхаемом воздухе - гипероксическая гипоксия) и эндогенной, обусловленной патологией организма.
Экзогенная гипоксическая гипоксия в свою очередь может быть нормобарической - т.е. развивающейся при нормальном барометрическом давлении, но сниженном парциальном давлении кислорода во вдыхаемом воздухе (например, при нахождении в замкнутых помещениях малого объема, как это имело место в описанном выше случае, работах в шахтах, колодцах при неисправных системах кислородообеспечения, в кабинах летательных аппаратов, подводных лодках, в медицинской практике при неисправностях наркозодыхательной аппаратуры), и гипобарической, обусловленной общим снижением барометрического давления (при подъеме в горы - "горная болезнь" или в негерметизированных летательных аппаратах без индивидуальных кислородных систем - "высотная болезнь"). Эндогенную же гипоксию можно подразделить на - респираторную (вариант гипоксической гипоксии); затруднение поступления кислорода в организм, нарушение альвеолярной вентиляции; гемическую как результат патологии переносчика кислорода - гемоглобина, приводящей к уменьшению кислородной емкости крови: а) дефицит гемоглобина при кровопотере, гемолизе эритроцитов, нарушении кроветворения, б) нарушение связывания О2 гемоглобином (угарный газ или окись углерода СО имеет сродство к гемоглобину в 240 раз больше, чем кислород, и при отравлении этим газом он блокирует временное соединение кислорода с гемоглобином, образуя стойкое соединение - карбоксигемоглобин (при содержании СО в воздухе порядка 0,005 до 30% гемоглобина превращается в НbСО, а при 0,1% СО образуется уже около 70% НbСО, что для организма смертельно); при действии на гемоглобин сильных окислителей (нитратов, нитритов, окислов азота, производных анилина, бензола, некоторых инфекционных токсинов, лекарстве; иных веществ: фенацитина, амидопирина, сульфаниламидов - метгемоглобинообразователей, превращающих двухвалентное железо гема в трехвалентную форму) образуется метгемоглобин; в замена нормального гемоглобина на патологические формы - гемоглобинопатии; г) разведение крови - гемодилюции;
- циркуляторную: а) застойный тип - снижение минутного объема сердца, б) ишемический тип - нарушение микроциркуляции;
тканевую (гистотоксическую - в результате нарушения утилизации кислорода тканями): блокада окислительных ферментов: а) специфическое связывание аминных центров ционида калий; б) связывание функциональных групп белковой части молекулы в) соли тяжелых металлов, алкилирующие агенты; г) конкурентное торможение - ингибирование сукцинагдегидрогеназы малоновой и другими дикарбо-новыми кислотами), авитаминозы (группы "В"), дезинтеграция биологических мембран, гормональные расстройства;
- связанную с уменьшением проницаемости гематопаренхиматозных барьеров: ограничение диффузии О2 через капиллярную мембрану, ограничение диффузии О2 через межклеточные пространства, ограничение диффузии О2 через клеточную мембрану.
- смешанный тип гипоксии.
По распространенности гипоксии различают а) местную (часто при локальном нарушении гемодинамики) и б) общую.
По скорости развития: а) молниеносную (развивается до тяжелой и даже смертельной степени а течение нескольких секунд, б) острую (в течение нескольким минут или десятков минут, в) подострую (несколько часов или десятков часов), г) хроническую (длится неделями, месяцами, годами).
По степени тяжести: а) легкая, б) умеренная, в) тяжелая, г) критическая (смертельная).
В патогенезе гипоксии можно выделить несколько основополагающих механизмов: развитие энергетического дефицита, нарушение обновления белковых структур, нарушение структуры мембран клеточных и органоидных, активация протеолиза, развитие ацидоза.
Метаболические нарушения ранее всего развиваются в энергетическом и углеводном обмене, в результате чего уменьшается в клетках содержание АТФ при одновременном возрастании продуктов его гидролиза - АДФ и АМФ. Кроме того, в цитоплазме накапливается НАД*Н2 (Избыток "собственного" внутримитохондриального НАД*Н2, формирующийся при выключении дыхательной цепи, тормозит работу челночных механизмов и цитоплазматический НАД*Н2 теряет возможность передавать гидрид-ионы в дыхательную цепь митохондрий). В цитоплазме НАД*Н2 может окисляться, восстанавливая пируват до лактата, а именно этот процесс инициируется при недостатке кислорода. Следствием его является избыточное образование в тканях молочной кислоты. Увеличение содержания АДФ как следствие недостаточности аэробного окисления активирует гликолиз, что также ведет к увеличению в тканях количества молочной кислоты. Недостаточность окислительных процессов приводит и нарушению других видов обмена: липидного, белкового, электролитного, обмена нейромедиаторов.
Вместе с тем развитие ацидоза влечет за собой гипервентиляцию легких, формирование гипокапнии и как следствие - газовый алкалоз.
Основную роль в развитии необратимых повреждений клетки при гипоксии на основании данных электронной микроскопии приписывают изменениям клеточных и митохондриальной мембран, причем, вероятно, именно мембраны митохондрий страдают в первую очередь.
Блокирование энергозависимых механизмов поддержания ионного баланса и нарушение проницаемости клеточных мембран в условиях недостаточного синтеза АТФ изменяет концентрацию К+, Nа+ и Са2+, при этом митохондрии теряют способность накапливать ионы Са2+ и в цитоплазме его концентрация возрастает. Не поглощенный митохондриями и находящийся в цитоплазме Са2+ в свою очередь является активатором деструктивных процессов в мембранах митохондрий, действующим через стимуляцию фермента фосфолипазы А, которая катализирует гидролиз митохондриальных фосфолипидов.
Метаболические сдвиги в клетках и тканях имеют следствием нарушения функций органов и систем организма.
Нервная система. Прежде всего, страдают сложные аналитико-синтетические процессы. Нередко первоначально наблюдаются своеобразная эйфория, потеря способности адекватно оценивать обстановку. При нарастании гипоксии развиваются грубые нарушения ВНД вплоть до утраты способности к простому счету, помрачения и полной потери сознания. Уже на ранних этапах наблюдаются расстройства координации вначале сложных (не может вдернуть нитку в иголку), а затем и простейших движений, а затем отмечается адинамия.
Сердечно-сосудистая система. При нарастающей гипоксии выявляются тахикардия, ослабление сократительной способности сердца, аритмия вплоть до фибрилляции предсердий и желудочков. Артериальное давление после первоначального подъема прогрессивно падает вплоть до развития коллапса. Выражены и расстройства микроциркуляции.
Дыхательная система. Стадия активации дыхания сменяется диспноэтическими явлениями с различными нарушениями ритма и амплитуды дыхательных движений (дыхание Чейн-Стокса, Куссмауля). После нередко наступающей кратковременной остановки появляется терминальное дыхание в виде редких глубоких судорожных "вздохов", постепенно ослабевающих вплоть до полного прекращения. В конечном счете, смерть наступает от паралича дыхательного центра.
Механизмы адаптации организма к гипоксии можно разделить, во-первых, на механизмы пассивной, а во-вторых, активной адаптации. По длительности эффекта их можно подразделить экстренные и долговременные.
Под пассивной адаптацией обычно подразумевают ограничение подвижности организма, а значит снижение потребности организма в кислороде.
Активная адаптация включает в себя реакции четырех порядков.
Реакции I порядка - реакции, направленные на улучшение доставки кислорода к клеткам. Это - увеличение альвеолярной вентиляции за счет учащения и углубления дыхательных движений - тахипноэ (одышка), а также мобилизации резервных альвеол, тахикардия, увеличение легочного кровотока, уменьшение радиуса тканевого цилиндра, увеличение массы циркулирующей крови за счет ее выхода из депо, централизация кровообращения, активация эритропоэза.
Реакции II порядка - реакции на тканевом, клеточном и субклеточном уровнях, направленные на увеличение способности клеток утилизировать кислород. Это - активация работы дыхательных ферментов, активация биогенеза митохондрий (при гипоксии функция отдельной митохондрии падает на 20%, что компенсируется возрастанием их количества в клетке), снижение критического уровня рО; (т.е. уровня, ниже которого скорость дыхания зависит от количества кислорода в клетке).
Реакции 111 порядка - изменение типа обмена в клетке: увеличивается доля гликолиза в энергетическом обеспечении клетки (гликолиз уступает дыханию в 13-18 раз).
Реакции IV порядка - повышение резистентности ткани к гипоксии за счет мощности энергосистем, активации гликолиза и снижения критического уровня рОд.
Долговременная адаптация характеризуется стойким увеличением диффузионной поверхности легочных альвеол, более совершенной корреляцией вентиляции и кровотока, компенсаторной гипертрофией миокарда, увеличением содержания гемоглобина в крови, активацией эритропоэза, а также увеличением количества митохондрий на единицу массы клетки.
ГОРНАЯ БОЛЕЗНЬ представляет собой вариант экзогенной гипобарической гипоксической гипоксии. Давно известно, что подъем на большую высоту вызывает болезненное состояние, типичными симптомами которого являются тошнота, рвота, желудочно-кишечные расстройства, физическая и умственная депрессия. Индивидуальная устойчивость к кислородному голоданию имеет широкий диапазон колебаний, на что обращали внимание многие исследователи при изучении горной болезни. Некоторые люди страдают от горной болезни уже на относительно небольших высотах (2130-2400 м над уровнем моря), в то время как другие бывают сравнительно устойчивы и к большим высотам. Указывалось, что подъем на 3050 м может вызывать у некоторых людей симптомы горной болезни, в то время как другие могут достичь высоты 4270 м без каких либо проявлений горной болезни. Однако на высоту 5790 м очень немногие люди могут подняться без проявления заметных симптомов горной болезни,
Ряд авторов наряду с горной болезнью выделяют еще и высотную болезнь, возникающую при быстрых (за несколько минут) подъемах на большие высоты, которая часто протекает без каких-либо неприятных ощущений. И в этом ее коварство. Она возникает при полетах на больших высотах без применения кислорода.
Систематические опыты по расшифровке патогенеза горной (высотной) болезни были выполнены Полем Бэром, который пришел к заключению, что понижение давления окружающей атмосферы действует лишь постольку, поскольку при этом уменьшается напряжение находящегося в этой атмосфере кислорода. Таким образом, наблюдаемые изменения в организме животного при разряжении атмосферы оказываются во всех отношениях тождественными с теми, что наблюдаются при уменьшении количества кислорода во вдыхаемом воздухе. Отмечается параллелизм между тем и другим состоянием не только качественный, но и количественный, если только в основание сравнения положить не процентное содержание кислорода во вдыхаемой смеси, а лишь исключительно напряжение в ней этого газа. Так, уменьшение количества кислорода в воздухе, когда его напряжение со 160 мм рт. ст. понижается до 80 мм рт. ст., может быть вполне сравнимо с разряжением воздуха вдвое, когда давление понизится с 760 мм рт- ст. (нормальное атмосферное давление) до 380 мм рт. ст.
Рaul Вегt помещал животное (мышь, крысу) под стеклянный колокол и откачивал из него воздух. При понижении давления воздуха на 1/3 (при падении давления до 500 мм рт. ст. или при понижении напряжения кислорода приблизительно до 105 мм рт. ст.) не отмечалось со стороны животного никаких ненормальных явлений; при понижении давления на 1/2 (при давлении в 380 мм рт. ст., т.е. при напряжении кислорода около 80 мм рт, ст.), у животных наблюдались лишь несколько апатичное состояние и стремление сохранить неподвижное состояние; наконец при дальнейшем понижении давления развивались все явления, связанные с недостатком кислорода. Наступление смерти наблюдалось обычно при понижении напряжения кислорода до 20-30 мм рт. ст.
В другом варианте опытов Paul Bert помещал животное уже в атмосферу чистого кислорода и затем разряжал ее. Как и следовало ожидать, a priori, разряжение можно было доводить до гораздо более значительных степеней, чем воздуха. Так, первые признаки влияния разряжения в виде некоторого учащения дыхания появляются при давлении 80 мм рт. ст. - в случае воздуха 380 мм рт. ст. Таким образом, для получения в разряженном кислороде тех же явлений, что и в воздухе, степень разряжения кислорода должна быть в 5 раз больше, чем степень разряжения атмосферного воздуха. Принимая во внимание, что атмосферный воздух содержит в своем составе по объему 1/5 часть кислорода, т.е. на долю кислорода приходится лишь пятая часть общего давления, ясно видно, что наблюдаемые явления зависят только от напряжения кислорода, а не от величины давления окружающей атмосферы.
На развитие горной болезни существенно влияет и двигательная активность, что было блестяще доказано Regnard,ом при помощи следующего демонстративного опыта. Под стеклянный колокол помещались две морские свинки - одной предоставлялась полная свобода поведения, а другая находилась в "беличьем" колесе, приводившемся в движение электромотором, в результате чего животное вынуждено было постоянно бежать. Пока воздух в колоколе оставался под обычным атмосферным давлением, бег свинки проходил вполне беспрепятственно, и она, по-видимому, не испытывала никакой особенной усталости. Если давление доводили до половины атмосферного или несколько ниже, то свинка, не побуждаемая к движению, оставалась неподвижной, не проявляя ни в чем никаких признаков страдания, в то время как находившееся внутри "беличьего" колеса животное обнаруживало явные затруднения в беге, постоянно спотыкалось и, наконец, в изнеможении падало на спину и оставалось без всяких активных движений, позволяя увлекать себя и бросать с места на место вращающимся стенкам клетки. Таким образом, то же самое понижение давления, которое переносится еще очень легко животным, находящимся в состоянии полного покоя, оказывается уже гибельным для животного, принужденного производить усиленные мышечные движения.
Лечение горной болезни: патогенетическое - спуск с горы, дача кислорода иди карбогена, дача кислых продуктов; симптоматическое - воздействие на симптомы заболевания.
Профилактика - оксигемопрофилактика, кислые продукты и возбуждающие средства.
Повышенное поступление кислорода в организм получило название ГИПЕРОКСИИ, В отличие от гипоксии гипероксия всегда носит экзогенный характер. Она может быть получена: а) при росте содержания кислорода во вдыхаемой газовой смеси, б) увеличении давления (барометрического, атмосферного) смеси газов. В отличие от гипоксии гипероксия в значительной степени в природных условиях не встречается и животный организм не мог приспособиться к ней в процессе эволюции. Однако все же адаптация к гипероксии существует и в большинстве случаев проявляется уменьшением легочной вентиляции, уменьшением кровообращения (урежение пульса), уменьшении количества гемоглобина и эритроцитов (пример: кессонная анемия). Человек может достаточно длительный период дышать смесью газов с повышенным содержанием кислорода. Первые полеты американских астронавтов осуществлялись на аппаратах, в кабинах которых создавалась атмосфера с избыточным содержанием кислорода.
При вдыхании кислорода под повышенным давлением развивается ГИ-ПЕРОКСИЧЕСКАЯ ГИПОКСИЯ, на которой следует остановиться особо. Без кислорода жизнь невозможна, но сам он способен оказывать токсический эффект, сравнимый со стрихнином.
При гипероксической гипоксии высокое напряжение кислорода в гка-нях ведет к окислительной деструкции (разрушению) митохондриальных структур, инактивации многих энзимов (ферментов), особенно содержащих в своем составе сульфгидрильные группы. Имеет место образование свободных кислородных радикалов, нарушающих образование ДНК и тем самым извращающих синтез белка. Следствием системной ферментной недостаточности является падение в мозге содержания -аминобутирата - главного тормозного медиатора серого вещества, что и обусловливает судорожный синдром кортикального генеза.
Токсический эффект кислорода может проявиться при длительном дыхании смесью газов с парциальным давлением кислорода 200 мм рт. ст. При парциальных давлениях менее 736мм рт. ст. гистотоксический эффект выражен преимущественно со стороны легких и проявляется либо в воспалительном процессе (высокое парциальное давление кислорода в альвеолах, артериальной крови и тканях является патогенным раздражителем, приводящим к рефлекторному спазму микрососудов легких и нарушению микроциркуляции и как результат повреждению клеток, что предрасполагает к воспалению), либо в диффузном микроателектазировании легких из-за разрушения свободнорадикальным окислением системы сурфактанта. Выраженный ателектаз легкого отмечается у летчиков, начинающих дышать кислородом задолго до набора высоты, при которой требуется дополнительная дача газа,
При 2500 мм рт, ст. кислородом насыщена не только артериальная и венозная кровь, в силу чего последняя не способна удалять из тканей СО2.
Дыхание же газовой смесью, парциальное давление кислорода в которой выше, чем 4416 мм рт. ст., приводит к тонико-клоническим судорогам и потере сознания в течение нескольких минут.
Организм приспосабливается к избытку кислорода, включая на первых парах те же механизмы, что и при гипоксии, но с противоположной направленностью (урежение дыхания и его глубины, урежение пульса, уменьшение массы циркулирующей крови, количества эритроцитов), но при развитии гипероксической гипоксии адаптация идет как и при других видах гипоксии.
ОСТРОЕ ОТРАВЛЕНИЕ КИСЛОРОДОМ клинически протекает в три стадии:
I стадия- учащение дыхания и сердцебиения, повышение артериального давления, расширение зрачков, усиление активности с отдельными подергиваниями мышц.
II стадия - стадия судорог, похожих на эпилептические с клоническими и тоническими проявлениями.
III стадия - терминальная - ослабление судорог с расстройством дыхания, которое переходит на отдельные вдохи, Смергь наступает от паралича дыхательного центра.