- •1Цитология .Предмет и задачи цитологии ,ее задачи ее значение в системе биологических и медицинских наук .Основные положения кл точной теории на современном этапе развития науки.
- •3.Строение клеток. Биологическая мембрана как основа строения строения клеток .Строение основные свойства и функции. Понятие о компартментаизации и ее основное значение
- •4Клеточная оболочка .Внешняя клеточная мембрана .Структурно – химические особенности характеристики надмембранного слоя и подмембранного слоя
- •6.Специализированные структуры клеточной оболочки: микроворсинки, базальные инвагинации их строение и функции
- •Простое межклеточное соединение
- •Плотное соединение (запирающая зона)
- •Десмосома (пятно сцепления, липкое соединение)
- •Нексус (щелевой контакт)
- •Синапс (синаптическое соединение)
- •8.Гиалоплазма.Физико –химические свойства. Химический состав .Участие в клеточном метаболизме
- •9.Органеллы. Определения и классификации .Органеллы общего и специального назначения.Мембранные инемембранные органеллы
- •10. Включения .Определения и классификации. Значение в жизнидеятельности клеток и организмы .Строение и химический состав различных видов вкючения.
- •Хроматин
- •Ядерная оболочка, ядерная ламина и ядерные поры (кариолемма)
- •Ядрышко
- •Вопрос21
- •Вопрос 22 Физиологическая регенерация
- •Репаративная регенерация
- •Вопрос23
- •Жизненный (клеточный) цикл
- •Деление клеток
- •Вопрос24
- •Стадии митоза.
- •Морфология митотических хромосом
- •Вопрос25
- •Вопрос26
- •Вопрос 27___________
- •Вопрос28
- •Вопрос29
- •Вопрос30 Неклеточные структуры
- •42 Смотреть в 40м вопросе
- •46Агранулоцит
- •47 Тромбоциты
- •Гистофизиология
- •65.Скелетные ткани
- •67.Хрящевые клетки, хондробласты и хондроциты, .Изогенные группы клеток. Строение суставного хряща . Хондрогенез и возрастные изменения хрящевых тканей.
- •68Костные ткани .Общая характеристика и касиф-я.
- •69.Клетки костной ткани.Остеоциты ,остеобласты. Межклеточное ве-во костной клетки.
- •I. Первый тип. Медленные мышечные волокна – красные.
- •II. Второй тип. Быстрые мышечные волокна – белые.
- •Миоидные клетки
3.Строение клеток. Биологическая мембрана как основа строения строения клеток .Строение основные свойства и функции. Понятие о компартментаизации и ее основное значение
Клетки находятся в межклеточном веществе, обеспечивающем их механическую прочность, питание и дыхание. Основные части любой клетки - цитоплазма и ядро.
Клетка покрыта мембраной, состоящей из нескольких слоёв молекул, обеспечивающей избирательную проницаемость веществ. В цитоплазме расположены мельчайшие структуры - органоиды. К органоидам клетки относятся: эндоплазматическая сеть, рибосомы, митохондрии, лизосомы, комплекс Гольджи, клеточный центр.
Биологиче Строение биологических мембран. Одной из основных особенностей всех эукариотических клеток является изобилие и сложность строения внутренних мембран. Мембраны отграничивают цитоплазму от окружающей среды, а также формируют оболочки ядер, митохондрий и пластид. Они образуют лабиринт эндр-плазматического ретикулума и уплощенных пузырьков в виде стопки, составляющих комплекс Гольджи. Мембраны образуют лизосомы, крупные и мелкие вакуоли растительных и грибных клеток, пульсирующие вакуоли простейших. Все эти структуры представляют собой компартменты (отсеки), предназначенные для тех или иных специализированных процессов и циклов. Следовательно, без мембран существование клетки невозможно.ская мембрана
Принцип компартментализации клеток эукариот постулирует, что биохимические процессы в клетке локализованы в определённых отсеках, покрытых оболочкой из бислоя липидов. Большинство органоидов в эукариотической клетке являются компартментами — митохондрии, хлоропласты, пероксисомы, лизосомы, эндоплазматический ретикулум, ядро клетки иаппарат Гольджи.
Функции
Внутри компартментов, окруженных бислоем липидов, могут существовать различные значения pH, функционировать разные ферментативные системы. Принцип компартментализации позволяет клетке выполнять разные метаболические процессы одновременно.
В цитозоле митохондрий находится окислительная среда, в которой NADH окисляется в NAD+.
Квинтессенцией принципа компартментализации можно считать аппарат Гольджи, в диктиосомах которого работают различные ферментативные системы, осуществляющие, например, разные стадии посттрансляционной модификации белков.
4Клеточная оболочка .Внешняя клеточная мембрана .Структурно – химические особенности характеристики надмембранного слоя и подмембранного слоя
Клеточная стенка — жёсткая оболочка клетки, расположенная снаружи от цитоплазматической мембраны и выполняющая структурные, защитные и транспортные функции. Обнаруживается у большинства бактерий, архей, грибов и растений. Животные и многие простейшиене имеют клеточной стенки. Клеточная мембрана настолько избирательна, что без её разрешения ни одно вещество из внешней среды не сможет даже случайно проникнуть в клетку. В клетке нет ни единой бесполезной, ненужной молекулы. Выходы из клетки также тщательно контролируются. Работа клеточной мембраны является существенной и не допускает даже малейшей ошибки. Внедрение вредного химического вещества в клетку, снабжение или выделение веществ в избыточном количестве или сбой выделения отходов приводит к гибели клетки. гликокаликс сокр., ГЛК (англ. glycocalyx сокр., GCX) — обогащенная углеводами периферическая зона внешнего поверхностного покрытия мембраныбольшинства эукариотических клеток. Гликокаликс располагается на микроворсинках апикальной мембраны энтероцитов и представляет из себя молекулярное сито, разделяющего молекулы по заряду, величине и другим характеристикам. Гликокаликс имеет толщину от 50 до 110 нм на верхушке энтероцита и от 15 до 40 нм на боковой поверхности. Гликокаликс заметно увеличивает прочность апикальной мембраны энтероцита, а также защищает её от воздействия многих высокомолекулярных токсичных веществ. Гликокаликс имеет свойство адсорбировать кишечные и панкреатические ферменты, благодаря чему в гликокаликсе происходят пищеварительные процессы, относимые, в соответствии с современной теорией пищеварения, разработанной А. М. Уголевым к последнему пищеварительному этапу — мембранному пищеварению. Плазмолемма (клеточная мембрана) обеспечивает дискретность живого вещества за счет разграничения его с внешней средой (микроокружением), генетическую индивидуальность, присущую клеткам данной особи, а также транспорт веществ из клетки и в клетку. Данные функциональные свойства плазмолеммы связаны с ее молекулярной организацией. Плазмолемма образована бимолекулярным слоем полярных липидов (преимущественно фосфолипидов — лецитина и цефалина) и встроенными в него молекулами глобулярных белков. Гидрофобные хвосты липидных молекул спрятаны от водных сред — гиалоплазмы и внешней среды — и направлены друг к другу (6), а гидрофилобращены в сторону содержащих воду фаз. В отдельных участках бислоя фосфолипидов присутствуют молекулы холестерина, придающие мембране жесткость. В этих участках мембрана, как правило, малоэластична, в связи с чем здесь не происходят процессы эндо- и экзоцитоза. Обращенные в межклеточную среду головки отдельных фосфолипидных молекул связаны с молекулами олигосахаров (2) — элементами гликокаликса. Липидные молекулы плазмолеммы обеспечивают ее основные физико-химические свойства, в первую очередь, текучесть мембраны, допускающую свободное перемещение составляющих ее молекул.
5.морфологические характеристики и механизмы барьерной ,и транспортной функции. Взаимосвязь плпзматической мембраны над и под мембранного слоев клеточной оболочки в процессе функционирования .структурные и химические механизмы взаимодействия клеток
барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
транспортная — через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов. Частицы, по какой-либо причине неспособные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускаетгидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза. При пассивном транспорте вещества пересекают липидный бислой без затрат энергии по градиенту концентрации путем диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа. Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивает в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).
рецепторная — некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы). Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.
Функции плазмолеммы. Эта мембрана выполняет ряд важнейших клеточных функций, ведущими из которых являются барьерная функция (разграничения цитоплазмы с внешней средой), функции рецепции и транспорта различных веществ как внутрь клетки, так и из нее.
Рецепторные функции связаны с локализацией на плазмолемме специальных структур, участвующих в специфическом «узнавании» химических и физических факторов. Клеточная поверхность обладает большим набором компонентов — рецепторов, определяющих возможность специфических реакций с различными агентами. Рецепторами на поверхности клетки могут служить гликопротеиды и гликолипиды мембран (см. рис. 5). Считается, что такие чувствительные к отдельным веществам участки могут быть разбросаны по всей поверхности клетки или собраны в небольшие зоны. Существуют рецепторы к биологически активным веществам — гормонам, медиаторам, к специфическим антигенам разных клеток или к определенным белкам.
функция гликокаликса сформирована как компенсация недостаточности мутационного процесса, для обеспечения адаптивного поведения. Функцией адаптивного поведения является сохранение удачных вариантов генотипа, при колебании величины физиологически значимых параметров в окружающей среде, для передачи их в последующие поколения. Это функция противостоит актуализации перераспределения ресурсов популяции в пользу других представителей биоценоза, и дает время, которое повышает вероятность возникновения перспективных мутантов в данной популяции.
Клетки постоянно поддерживают связь друг с другом. Соседние клетки во многих тканях связаны специальными каналами так, что вещества с небольшой молекулярной массой могут непосредственно переходить из клетки в клетку. С помощью таких контактов достигается согласованная работа многих клеток. Кроме этого, клетки могут обмениваться сигналами на расстоянии, синтезируя специальные химические вещества. Молекулы этих веществ могут очень быстро разрушаться или поглощаться соседними клетками, и тогда сигнал будет воспринят только близко расположенными клетками. Но есть такие вещества, которые по кровеносному руслу способны достигать самых отдаленных клеток, влияя на их функции. К ним относятся гормоны - продукты желез внутренней секреции. У человека и других млекопитающих их известно несколько десятков. Под контролем гормонов протекают все этапы жизнедеятельности организма от его зарождения до старости. На тот или иной гормон реагируют клетки, в плазматической мембране которых или внутри клетки имеется соответствующий рецептор , способный связываться с молекулой гормона. Взаимодействие гормона с рецептором является сигналом для начала синтеза новых или изменения скорости синтеза уже существующих белковых молекул. Синтез самих гормонов регулируется сигналами о состоянии организма, поступающими от всех его рецепторов в промежуточный мозг и далее в гипофиз - центральную железу внутренней секреции. Гормоны известны не только у позвоночных, но и у высокоразвитых беспозвоночных животных: моллюсков, ракообразных, насекомых. Насекомые, в частности виды рода Drosophila, оказались удобной моделью для изучения механизмов действия гормонов на такие важные этапы онтогенеза, как рост, линька, метаморфоз и половое размножение..
