
- •1Цитология .Предмет и задачи цитологии ,ее задачи ее значение в системе биологических и медицинских наук .Основные положения кл точной теории на современном этапе развития науки.
- •3.Строение клеток. Биологическая мембрана как основа строения строения клеток .Строение основные свойства и функции. Понятие о компартментаизации и ее основное значение
- •4Клеточная оболочка .Внешняя клеточная мембрана .Структурно – химические особенности характеристики надмембранного слоя и подмембранного слоя
- •6.Специализированные структуры клеточной оболочки: микроворсинки, базальные инвагинации их строение и функции
- •Простое межклеточное соединение
- •Плотное соединение (запирающая зона)
- •Десмосома (пятно сцепления, липкое соединение)
- •Нексус (щелевой контакт)
- •Синапс (синаптическое соединение)
- •8.Гиалоплазма.Физико –химические свойства. Химический состав .Участие в клеточном метаболизме
- •9.Органеллы. Определения и классификации .Органеллы общего и специального назначения.Мембранные инемембранные органеллы
- •10. Включения .Определения и классификации. Значение в жизнидеятельности клеток и организмы .Строение и химический состав различных видов вкючения.
- •Хроматин
- •Ядерная оболочка, ядерная ламина и ядерные поры (кариолемма)
- •Ядрышко
- •Вопрос21
- •Вопрос 22 Физиологическая регенерация
- •Репаративная регенерация
- •Вопрос23
- •Жизненный (клеточный) цикл
- •Деление клеток
- •Вопрос24
- •Стадии митоза.
- •Морфология митотических хромосом
- •Вопрос25
- •Вопрос26
- •Вопрос 27___________
- •Вопрос28
- •Вопрос29
- •Вопрос30 Неклеточные структуры
- •42 Смотреть в 40м вопросе
- •46Агранулоцит
- •47 Тромбоциты
- •Гистофизиология
- •65.Скелетные ткани
- •67.Хрящевые клетки, хондробласты и хондроциты, .Изогенные группы клеток. Строение суставного хряща . Хондрогенез и возрастные изменения хрящевых тканей.
- •68Костные ткани .Общая характеристика и касиф-я.
- •69.Клетки костной ткани.Остеоциты ,остеобласты. Межклеточное ве-во костной клетки.
- •I. Первый тип. Медленные мышечные волокна – красные.
- •II. Второй тип. Быстрые мышечные волокна – белые.
- •Миоидные клетки
Вопрос30 Неклеточные структуры
Неклеточные структуры представляют живое вещество, образованное клетками. Сюда относятся основное вещество соединительной ткани, состоящее из белков и мукополисахаридов, и симпласт. В основном веществе соединительной ткани располагаются ретикулярные, эластические, коллагеновые и аргирофильные волокна, клетки соединительной ткани. Симпласт — клетки, слившиеся в единую массу, например мышечные волокна.
Неклеточные структуры являются производными клеток. К ним принадлежат симпласт и межклеточное вещество. Симпласт представлен общей протоплазматической массой, в которой расположены многочисленные ядра. По существу это слившиеся воедино многие клетки. Примером симпласта могут служить поперечнополосатые мышечные волокна. Межклеточное (основное) вещество, как следует из названия, расположено между клетками. Оно имеет различное строение у разных видов тканей. Например, кровь имеет жидкое межклеточное вещество (плазму), а межклеточное вещество рыхлой соединительной ткани представлено аморфным (бесструктурным) веществом с включенными в него коллагеновыми и эластическими волокнами.
Синцитий (от греч. σύν — «вместе» и κύτος «клетка», букв. - «соклетие») — тип ткани у животных, растений и грибов с неполным разграничением клеток; обособленные участкицитоплазмы с ядрами связаны между собой цитоплазматическими перемычками (например, зародышевая соединительная ткань — мезенхима).
Представляет собой несколько клеток, слившихся друг с другом, и содержащих несколько ядер.
В частности, миокард человека представляет собой функциональный синцитий: клетки сердечной мышцы — кардиомиоциты — объединены между собой вставочными дисками, обеспечивающими щелевые контакты с низким сопротивлением. Благодаря низкому сопротивлению вставочных дисков потенциал действия свободно распространяется от одного кардиомиоцита к другому, что обеспечивает синхронное сокращение мышцы. Сердце состоит из двух синцитиев - предсердного, образованного мышечными стенками обоих предсердий, и желудочкового, образованного мышечными стенками желудочков, разделенных фиброзной перегородкой. Существование в сердце двух функциональных синцитиев обеспечивает действие последовательное сокращение предсердий и желудочков в сердечном цикле.
40. Кроветворение и гемоцитопоэз
ГЕМОПОЭЗ
Общая гистология - кроветворение
Кроветворением, или гемопоэзом, называют развитие крови. Различают эмбриональный гемопоэз, который происходит в эмбриональный период и приводит к развитию крови как ткани, и постэмбриональный гемопоэз, который представляет собой процесс физиологической регенерации крови.
Развитие эритроцитов называют эритропоэзом, развитие гранулоцитов — гранулоцитопоэзом, тромбоцитов — тромбоцитопоэзом, моноцитов — моноцитопоэзом, развитие лимфоцитов и иммуноцитов — лимфоцито- и иммуноцитопоэзом.
Эмбриональный гемопоэз
В развитии крови как ткани в эмбриональный период можно выделить 3 основных этапа, последовательно сменяющих друг друга – мезобластический, гепатолиенальный и медуллярный.
Первый, мезобластический этап – это появление клеток крови во внезародышевых органах, а именно в мезенхиме стенки желточного мешка, мезенхиме хориона истебля. При этом появляется первая генерация стволовых клеток крови (СКК). Мезобластический этап протекает с 3-й по 9-ю неделю развития зародыша человека.
Второй, гепатолиенальный этап начинается с 5—6-й недели развития плода, когдапечень становится основным органом гемопоэза, в ней образуется вторая генерация стволовых клеток крови. Кроветворение в печени достигает максимума через 5 мес и завершается перед рождением. СКК печени заселяют тимус, селезенку и лимфатические узлы.
Третий, медуллярный (костномозговой) этап — это появление третьей генерации стволовых клеток крови в красном костном мозге, где гемопоэз начинается с 10-й недели и постепенно нарастает к рождению. После рождения костный мозг становится центральным органом гемопоэза.
Рассмотрим подробнее особенности гемопоэза в стенке желточного мешка, в печени, в тимусе, селезенке, лимфатических узлах и в костном мозге.
Постэмбриональный гемопоэз
Постэмбриональный гемопоэз представляет собой процесс физиологической регенерации крови, который компенсирует физиологическое разрушение дифференцированных клеток. Он подразделяется на миелопоэз и лимфопоэз.
Миелопоэз происходит в миелоидной ткани, расположенной в эпифизах трубчатых и полостях многих губчатых костей. Здесь развиваются эритроциты, гранулоциты, моноциты, тромбоциты, а также предшественники лимфоцитов. В миелоидной ткани находятся стволовые клетки крови и соединительной ткани. Предшественники лимфоцитов постепенно мигрируют и заселяют тимус, селезенку, лимфоузлы и некоторые другие органы.
Лимфопоэз происходит в лимфоидной ткани, которая имеет несколько разновидностей, представленных в тимусе, селезенке, лимфоузлах. Она выполняет функции образования T- и B-лимфоцитов и иммуноцитов (например, плазмоцитов).
Миелоидная и лимфоидная ткани являются разновидностями соединительной ткани, т.е. относятся к тканям внутренней среды. В них представлены две основные клеточные линии — клетки ретикулярной ткани и гемопоэтические клетки.
Ретикулярные, а также жировые, тучные и остеогенные клетки вместе с межклеточным веществом формируют микроокружение для гемопоэтических элементов. Структуры микроокружения и гемопоэтические клетки функционируют в неразрывной связи друг с другом. Микроокружение оказывает воздействие на дифференцировку клеток крови (при контакте с их рецепторами или путем выделения специфических факторов).
Таким образом, для миелоидной и всех разновидностей лимфоидной ткани характерно наличие стромальных и гемопоэтических элементов, образующих единое функциональное целое.
СКК относятся к самоподдерживающейся популяции клеток. Они редко делятся. Выявление СКК стало возможным при применении метода образования клеточных колоний – потомков одной стволовой клетки.
Пролиферативную активность СКК регулируют колониестимулирующие факторы(КСФ), различные виды интерлейкинов (ИЛ-3 и др.). Каждая СКК в эксперименте или лабораторном исследовании образует одну колонию и называется колониеобразующей единицей (сокращенно КОЕ, CFU).
Исследование клеточного состава колоний позволило выявить две линии их дифференцировки. Одна линия дает начало мультипотентной клетке — родоначальнице гранулоцитарного, эритроцитарного, моноцитарного и мегакариоцитарного рядов гемопоэза (сокращенно КОЕ-ГЭММ). Вторая линия дает начало мультипотентной клетке — родоначальнице лимфопоэза (КОЕ-Л).
Из мультипотентных клеток дифференцируются олигопотентные (КОЕ-ГМ) и унипотентные родоначальные клетки. Методом колониеобразования определены родоначальные унипотентные клетки для моноцитов (КОЕ-М), нейтрофильных гранулоцитов (КОЕ-Гн), эозинофилов (КОЕ-Эо), базофилов (КОЕ-Б), эритроцитов (БОЕ-Э и КОЕ-Э), мегакариоцитов (КОЕ-МГЦ), из которых образуются клетки-предшественники. В лимфопоэтическом ряду выделяют унипотентные клетки — предшественницы для B-лимфоцитов и для T-лимфоцитов. Полипотентные (плюрипотентные и мультипотентные), олигопотентные и унипотентные клетки морфологически не различаются.
Все приведенные выше стадии развития клеток составляют четыре основных класса, или компартмента, гемопоэза:
I класс — СКК - стволовые клетки крови (плюрипотентные, полипотентные);
II класс — КОЕ-ГЭММ и КОЕ-Л - коммитированные мультипотентные клетки (миелопоэза или лимфопоэза);
III класс — КОЕ-М, КОЕ-Б и т.д. - коммитированные олигопотентные и унипотентные клетки;
IV класс — клетки-предшественники (бласты, напр.: эритробласт, мегакариобласт и т.д.).
Сразу отметим, что оставшиеся два класса гемопоэза составляют созревающие клетки (V класс) и зрелые клетки крови (VI класс).
Эритропоэз у млекопитающих и человека протекает в костном мозге в особых морфофункциональных ассоциациях, получивших название эритробластических островков. Эритробластический островок состоит из макрофага, окруженного одним или несколькими кольцами эритроидных клеток, развивающихся из унипотентной КОЕ-Э, вступившей в контакт с макрофагом. КОЕ-Э и образующиеся из нее клетки (от проэритробласта до ретикулоцита) удерживаются в контакте с макрофагом его рецепторами.
У взрослого организма потребность в эритроцитах обычно обеспечивается за счет усиленного размножения эритробластов. Но всякий раз, когда потребность организма в эритроцитах возрастает (например, при потере крови), эритробласты начинают развиваться из предшественников, а последние — из стволовых клеток.
В норме из костного мозга в кровь поступают только эритроциты и ретикулоциты.
Кровь — внутренняя среда организма, образованная жидкой соединительной тканью. Состоит из плазмы и форменных элементов: клеток лейкоцитов и постклеточных структур (эритроцитов и тромбоцитов). Циркулирует по системе сосудов под действием силы ритмически сокращающегося сердца и не сообщается непосредственно с другими тканями тела ввиду наличия гистогематических барьеров. В среднем, массовая доля крови к общей массе тела человека составляет 6,5-7 %. У позвоночных кровь имеет красный цвет (от бледно- до тёмно-красного), который ей придаёт гемоглобин, содержащийся в эритроцитах. У некоторых моллюсков и членистоногих кровь имеет голубой цвет за счёт наличия гемоцианина.
|
Свойства крови
Суспензионные свойства зависят от белкового состава плазмы крови, и от соотношения белковых фракций (в норме альбуминов больше, чем глобулинов).
Коллоидные свойства связаны с наличием белков в плазме. За счёт этого обеспечивается постоянство жидкого состава крови, так как молекулы белка обладают способностью удерживать воду.
Электролитные свойства зависят от содержания в плазме крови анионов и катионов. Электролитные свойства крови определяются осмотическим давлением крови.
Состав крови
Гематокрит (Ht, PCV): форменные элементы крови — 46 %; плазма — 54 %
Дополнительные сведения: Гематокрит
Весь объём крови живого организма условно делится на периферический (находящийся и циркулирующий в русле сосудов) и кровь, находящуюся в кроветворных органах и периферических тканях. Кровь состоит из двух основныхкомпонентов: плазмы и взвешенных в ней форменных элементов. У взрослого здорового человека объём плазмы достигает 50—60 % цельной крови, а форменных элементов крови составляют около 40—50 %. Отношение форменных элементов крови к её общему объёму, выраженное в процентах или представленное в виде десятичной дроби с точностью до сотых, называется гематокритным числом (от др.-греч. αἷμα — кровь, κριτός — показатель) илигематокритом (Ht). Таким образом, гематокрит — часть объёма крови, приходящаяся на эритроциты[1] (иногда определяется как отношение всех форменных элементов (эритроциты, лейкоциты, тромбоциты) к общему объёму крови[2]). Определение гематокрита проводится с помощью специальной стеклянной градуированной трубочки — гематокрита, которую заполняют кровью и центрифугируют. После этого отмечают, какую её часть занимают форменные элементы крови (лейкоциты, тромбоцитыи/или эритроциты). В медицинской практике для определения показателя гематокрита (Ht или PCV) всё шире распространяется использование автоматических гематологических анализаторов.
]Плазма
Плазма крови (от греч. πλάσμα — нечто сформированное, образованное) — жидкая часть крови, которая содержит воду и взвешенные в ней вещества — белки и другие соединения. Основными белками плазмы являются альбумины,глобулины и фибриноген. Около 85 % плазмы составляет вода. Неорганические вещества составляют около 2-3 %; это катионы (Na+, K+, Mg2+, Ca2+) и анионы (HCO3-, Cl-, PO43-, SO42-). Органические вещества (около 9 %) в составе крови подразделяются на азотсодержащие (белки, аминокислоты, мочевина, креатинин, аммиак, продукты обмена пуриновых и пиримидиновых нуклеотидов) и безазотистые (глюкоза, жирные кислоты, пируват, лактат, фосфолипиды, триацилглицеролы, холестерин). Также в плазме крови содержатся газы (кислород, углекислый газ) и биологически активные вещества (гормоны, витамины, ферменты, медиаторы). Гистологически плазма является межклеточным веществом жидкой соединительной ткани (крови).
Форменные элементы
Слева направо: эритроцит,тромбоцит и лейкоцит (Сканирующаяэлектронная микроскопия)
Основная статья: Форменные элементы крови
Дополнительные сведения: Эритроциты, Лейкоциты, и Тромбоциты
У взрослого человека форменные элементы крови составляют около 40—50 %, а плазма — 50—60 %. Форменные элементы крови представлены эритроцитами, тромбоцитами и лейкоцитами:
Эритроциты (красные кровяные тельца) — самые многочисленные из форменных элементов. Зрелые эритроциты не содержат ядра и имеют форму двояковогнутых дисков. Циркулируют 120 дней и разрушаются в печени и селезёнке. В эритроцитах содержится железосодержащий белок — гемоглобин. Он обеспечивает главную функцию эритроцитов — транспорт газов, в первую очередь — кислорода. Именно гемоглобин придаёт крови красную окраску. В лёгкихгемоглобин связывает кислород, превращаясь в оксигемоглобин, который имеет светло-красный цвет. В тканях оксигемоглобин высвобождает кислород, снова образуя гемоглобин, и кровь темнеет. Кроме кислорода, гемоглобин в форме карбогемоглобина переносит из тканей в лёгкие углекислый газ.
Тромбоциты (кровяные пластинки) представляют собой ограниченные клеточной мембраной фрагменты цитоплазмы гигантских клеток костного мозга (мегакариоцитов). Совместно с белками плазмы крови (например, фибриногеном) они обеспечивают свёртывание крови, вытекающей из повреждённого сосуда, приводя к остановке кровотечения и тем самым защищая организм от кровопотери.
Лейкоциты (белые клетки крови) являются частью иммунной системы организма. Они способны к выходу за пределы кровяного русла в ткани. Главная функция лейкоцитов — защита от чужеродных тел и соединений. Они участвуют в иммунных реакциях, выделяя при этом Т-клетки, распознающие вирусы и всевозможные вредные вещества; В-клетки, вырабатывающие антитела, макрофаги, которые уничтожают эти вещества. В норме лейкоцитов в крови намного меньше, чем других форменных элементов.
Кровь относится к быстро обновляющимся тканям. Физиологическая регенерация форменных элементов крови осуществляется за счёт разрушения старых клеток и образования новых органами кроветворения. Главным из них у человека и других млекопитающих являетсякостный мозг. У человека красный, или кроветворный, костный мозг расположен в основном в тазовых костях и в длинных трубчатых костях. Основным фильтром крови является селезёнка (красная пульпа), осуществляющая в том числе и иммунологический её контроль (белая пульпа).
Состав
Белки — около 7,2 % (в плазме):
сывороточный альбумин 4 %,
сывороточный глобулин 2,8 %,
фибриноген 0,4 %;
Минеральные соли — 0,9—0,95 %;
Глюкоза — 3,33—5,55 ммоль/л.
Содержание гемоглобина:
у мужчин 7,7—8,1 ммоль/л (78—82 ед. по Сали),
у женщин 7,0—7,4 ммоль/л 70—75 ед. по Сали);
Число эритроцитов в 1 мм³ крови:
у мужчин — 4 500 000—5 000 000,
у женщин — 4 000 000—4 500 000;
Число тромбоцитов в крови в 1 мм³ — около 300 000;
Число лейкоцитов в крови в 1 мм³ — около 4000—9000;
сегментоядерные 50—70 %,
лимфоциты 20—40 %,
моноциты 2—10 %,
палочкоядерные 1—5 %,
эозинофилы 2—4 %,
базофилы 0—1 %,
метамиелоциты 0—1 %.
Показатели
Осмотическое давление плазмы — около 7,5 атм;
Онкотическое давление плазмы — 25—30 мм рт. ст.;
Плотность крови — 1,050—1,060 г/см³;
Скорость оседания эритроцитов:
у мужчин — 1—10 мм/ч,
у женщин — 2—15 мм/ч (у беременных до 45 мм/ч);
Функции
Кровь, непрерывно церкулирует в замкнутой системе кровеносных сосудов и выполняет в организме различные функции такие как :
Транспортная — передвижение крови; в ней выделяют ряд подфункций:
Дыхательная — перенос кислорода от лёгких к тканям и углекислого газа от тканей к лёгким;
Питательная — доставляет питательные вещества к клеткам тканей;
Экскреторная (выделительная) — транспорт ненужных продуктов обмена веществ к легким и почкам для их экскреции (выведения) из организма;
Терморегулирующая — регулирует температуру тела.
Регуляторная — связывает между собой различные органы и системы перенося сигнальные вещества (гормоны) которые в них образуются.
Защитная — обеспечение клеточной и гуморальной защиты от чужеродных агентов;
Гомеостатическая — поддержание гомеостаза (постоянства внутренней среды организма) — кислотно-основного равновесия, водно-электролитного баланса и т. д.
]Группы крови
По общности некоторых антигенных свойств эритроцитов все люди подразделяются по принадлежности к определённой группе крови. У каждого человека группа крови индивидуальная. Принадлежность к определённой группе крови является врождённой и не изменяется на протяжении всей жизни. Наибольшее значение имеет разделение крови на четыре группы по системе «AB0» и на две группы по системе «резус фактор». Соблюдение совместимости крови именно по этим группам имеет особое значение для безопасного переливания крови. Люди с 1 группой крови являются универсальными донорами, а люди с 4 группой — универсальными реципиентами. Существуют и другие, менее значимые группы крови. Можно определить вероятность появления у ребёнка той или иной группы крови зная группу крови его родителей.
41 Лимфа и лимфоцитопоэз
Лимфа (от греч. lympha - чистая влага, ключевая вода) - биологическая жидкость, образующаяся изИнтерстициальной (тканевой) жидкости, Проходящая по системе лимфатических сосудов через цепочку лимфатических узлов (в которых она очищается и обогащается форменными элементами) и через грудной проток попадающая в кровь.
Механизм образования лимфы Связан с фильтрацией плазмы из кровеносных капилляров в Интерстициальное пространство, В результате чего образуетсяИнтерстициальная (тканевая) жидкость. У молодого человека с массой тела 70 кг в интерстициалъном пространстве содержится около 10.5 л жидкости. Эта жидкость частично вновь всасывается в кровь, частично поступает в лимфатические капилляры, образуя Лимфу. Образованию лимфы способствует повышенное гидростатическое давление в интерстициальном пространстве и различия в онкотическом давлении между кровеносными сосудами и интерстициальной жидкостью (обеспечивающие ежедневное поступление 100-200 г белков из крови в тканевую жидкость). Эти белки через лимфатическую систему полностью возвращаются в кровь.
Объем лимфы В организме человека составляет, в среднем, 1-2 л. Различают Периферическую лимфу (оттекающую от тканей), Промежуточную лимфу (прошедшую через лиматические узлы) и Центральную лимфу (находящуюся в грудном протоке).
Основные функции лимфы:
Гомеостатическая • Поддержание постоянства микроокружения клеток путем регуляции объема и состава интерстициальной жидкости;
Метаболическая - Участие в регуляции обмена веществ путем транспорта метаболитов, белков, ферментов, воды, минеральных веществ, молекул биологически активных веществ;
Трофическая - Транспорт питательных веществ (преимущество липидов) из пищеварительного тракта в кровь; О Защитная - Участие в иммунных реакциях (транспорт антигенов, антител, лимфоцитов, макрофагов и АПК).
Состав лимфы. Лимфа состоит из жидкой части (плазмы) 0 Форменных элементов. Чем ближе лимфатический сосуд к грудному протоку, тем выше в его лимфе содержание форменных элементов. Однако и в центральной лимфе форменные элементы составляют менее 1% ее объема.
Плазма лимфы По концентрации и составу солей близка к плазме крови, обладает щелочной реакцией (рН 8.4-9.2), содержит меньше белков и отличается от плазмы крови по их составу.
Форменные элементы лимфы. Концентрация форменных элементов варьирует в пределах 2-20 тыс./мкл (2-20х 109/л), существенно меняясь в течение суток или в результате различных воздействий.
Клеточный состав лимфы: 90% лимфоцитов, 5% моноцитов, 2% эозинофилов, 1% сегментоядерных нейтрофилов и 2% других клеток. Эритроциты в норме в лимфе отсутствуют, попадая в нее лишь при повышении проницаемости кровеносных сосудов микроциркуляторного русла. Благодаря присутствию тромбоцитов, фибриногена и других факторов свертывания лимфа способна свертываться, образуя сгусток.
Лимфоцитопоэз - Развитие лимфоцитов - происходит в Красном костном мозге и различных лимфоидных органах И характеризуется их поэтапной Миграцией (см. также главу 8).
Красный костный мозг содержит плюрипотентные СКК, которые дают начало частично детерминированным полипотентным родоначаль-ным клеткам лимфоцитопоэза (КОЕ-Л).
КОЕ-Л Служит источником развития трех видов лимфоцитов - В-лимфоцитов, Т-лимфоцитов и NK-клеток, давая, соответственно, три вида Унипотентных (коммитированных) родоначалъных клеток - Про-В-лимфоциты, протимоциты и (возможно) предшественник NK-клеток. Каждая из этих клеток детерминирована в направлении развития только одного вида лимфоцитов.
Последующее развитие Т - и В-лимфоцитов из родоначалъных клеток связано с их пролиферацией и дифференнировкой и разделяется на две фазы: Антиген-независимую и антиген-зависимую .
1. Антиген-независимая фаза развития Т- и В-лимфоцитов Осуществляется в отсутствие антигенов В центральных органах кроветворения и иммуногенеза - тимусе и красном костном мозге (у птиц - фабрициевой сумке), соответственно. Ее наиболее важными этапами служат:
(1) Миграция коммитированных предшественников из красного костного мозга в центральные органы кроветворения и иммуногенеза. У человека этот этап относится только к развитию Т-лимфоцитов, поскольку у него, как и всех млекопитающих, красный костный мозг одновременно выполняет роль центрального органа по отношению к В-лимфоцитам. Процесс миграции контролируется адгезивными взаимодействиями между эндотелием сосудов тимуса и клетками-предшественниками, а также, возможно, секрецией клетками тимуса Хемотаксических факторов.
(2) приобретение клетками набора рецепторов на плазмолем-ме: (а) разнообразных Специфических антиген-распознающих рецепторов (образуются в результате реаранжировки части генома, ответственной за антигенную специфичность); (б) ряда Добавочных рецепторов, Необходимых для взаимодействия с другими клетками;
(3) процесс отбора (селекции) клеток с необходимым набором рецепторов и гибель механизмом апоптоза лимфоцитов, не прошедших селекцию;
(4) выселение лимфоцитов (прошедших селекцию) В просвет сосудов и их миграция Через кровоток из центральных органов кроветворения и иммуногенеза в периферические с заселением их Т - и В-зависимых зон (содержащих преимущественно лимфоциты соответствующего вида). Поскольку мигрирующие клетки еще не встречались с антигенами, их называют Наивными, или девственными. Направленной миграции способствуют специфические адгезивные взаимодействия междуХоминг-рецепторами Наивных Т - и В-лимфоцитов и Лигандами (адрессинами) на поверхности эндотелия Сосудов периферических лимфоидных органов (см. главу 7).
2. Антиген-зависимая фаза развития лимфоцитов Происходит в Периферических органах кроветворения и иммуногенеза (лимфатических узлах, селезенке, миндалинах, пейеровых бляшках, аппендиксе и др.). Она осуществляется В присутствии антигенов (представляемых АПК), сопровождается Активацией и пролиферацией лимфоцитов И завершается формированием эффекторных и регуляторных Т-лимфонитов, плазматических клеток, а также Т - и В-клеток памяти.
.