Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
номер зачетной книжки 20.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.9 Mб
Скачать

График зависимостей температуры стенки лопатки со стороны газа и охладителя от времени для одноконтурного двигателя

График зависимостей температуры стенки лопатки со стороны газа и охладителя от времени для двухконтурного двигателя

Для стационарного случая температурного состояния вычислим глубину охлаждения выделенного участка профиля по формуле:

;

Тогда для одноконтурного ГТД получим глубину охлаждения:

Для двухконтурного ГТД получим глубину охлаждения:

Таким образом, в результате расчетов установили, что схема охлаждения в двухконтурном ГТД эффективнее, чем в одноконтурном ГТД, так как глубина охлаждения в схеме двухконтурного ГТД выше , чем в одноконтурном двигателе на 0,2%.

Причем эффективность схемы охлаждения в двухконтурном двигателе обусловлена существенным увеличением хладоресурса охладителя за счет установки дополнительного воздухо-воздушного теплообменника во внешнем контуре.

1.2 Исследование теплового состояния матричной лопатки соплового аппарата первой ступени турбины гтд методом конечных элементов

1.2.1 Постановка задачи исследования теплового состояния матричной лопатки.

В отличие от дефлекторной лопатки, охлаждаемая матричная лопатка обладает более сложной геометрией поперечного сечения (см. рисунок 3), что обусловливает значительно большую неравномерность распределения температуры. Однако известно, что в большинстве случаев величины тепловых потоков по высоте лопатки отличаются незначительно и поэтому неравномерностью распределения температуры по высоте можно пренебречь. В этом случае задача исследования теплового состояния лопатки сводится к задаче нахождения двухмерного температурного поля в среднем сечении по высоте лопатки в каждый момент времени.

Будем предполагать, что температура газа и температура охлаждающего воздуха не меняются с течением времени и одинаковы для любого участка профиля. Коэффициенты теплоотдачи от газа к лопатке и от лопатки к охлаждающему воздуху на каждом участке границы профиля также считаем постоянными и равными их соответствующим средним значениям на участке.

С учетом сделанных допущений распределение температуры по профилю лопатки будет удовлетворять следующей краевой задаче нестационарной теплопроводности:

(1.11)

(1.12)

(1.13)

Рисунок 3 – Профиль матричной лопатки охлаждаемой турбины

Здесь через обозначена геометрическая область, занятая профилем лопатки;

- искомая температура; - время, отсчитываемое от начала нагревания; - начальная температура лопатки; - граница i–го участка профиля, омываемого средой с температурой и характеризуемого значением коэффициента теплоотдачи ; - температура на границе i–го участка; I – число участков границы профиля.

Получить аналитическое решение задачи (1.11) – (1.13) в общем случае не представляется возможным, поэтому ее решение проводится численно, с использованием вычислительной техники. В настоящей курсовой работе для решения этой задачи используется метод конечных элементов.