Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЭлМаш(лекция.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
3.68 Mб
Скачать

V. Синхронные машины

V-1. Назначение, устройство и принцип действия

Синхронные машины используются главным образом в качестве источников электрической энергии переменного тока; их устанавливают на мощных тепловых, гидравлических и атомных электростанциях. Конструкция синхронного генератора определяется в основном типом привода. В зависимости от этого различают турбогенераторы, гидрогенераторы, дизель генераторы. Турбогенераторы приводятся во вращение паровыми или газовыми турбинами, гидрогенераторы – гидротурбинами, дизель генераторы – двигателями внутреннего сгорания.

Синхронной машиной переменного тока называется такая машина, скорость которой находится в строгой зависимости от частоты. Ротор вращается с такой же скоростью, что и поле статора

Турбогенераторы изготовляются на синхронную скорость n=3000-1500 об/мин, мощностью 125; 320; 500; 800; 1000; 1200 МВт. Статор (якорь) синхронной машины аналогичен асинхронной машине. Он набирается из листов электротехнической стали (1). В пазах статора расположены три фазы, сдвинутые относительно друг друга на 120 электрических градусов (2), рис. 83. (3) индуктор явнополюсной машины, (4) обмотка возбуждения, (5) контактные кольца. Ротор (индуктор) в синхронном турбогенераторе выполняется неявнополюсным. На роторе расположена обмотка возбуждения (2), которая питается от источника постоянного тока. Обмотку возбуждения в такой машине размещают в пазах сердечника ротора, выполненного из массивной стальной поковки высококачественной стали (рис. 84), и укрепляют немагнитными клиньями.

Рис 83.

Лобовые части обмотки, на которые воздействуют значительные центробежные силы, крепят с помощью стальных массивных бандажей. Для получения приблизительно синусоидального распределения магнитной индукции обмотку возбуждения укладывают в пазы, занимающие 2/3 полюсного деления, рис. 84.

Рис 84.

Диаметр ротора не должен превышать 1.0-1.5м, длина ротора составляет 7-8 метров.

Охлаждение элементов турбогенератора осуществляется водородом, трансформаторным маслом, дистиллированной водой.

Гидрогенераторы. Эти машины приводятся во вращение тихоходными гидравлическими турбинами, частота вращения которых составляет 50 500 об/мин. Поэтому их выполняют с большим числом полюсов и явнополюсным ротором, рис 83. Диаметр ротора гидрогенератора достигает у мощных машин 16м при длине 1.75м (640 МВА) на ободе ротора крепятся полюса с обмоткой возбуждения. Полюса изготовляют из листовой стали.

Охлаждение элементов гидрогенератора чаще всего осуществляется водой.

Кроме синхронных генераторов имеются синхронные двигатели и синхронные компенсаторы.

V-2. Реакция якоря в синхронном явнополюсном генераторе

Как было сказано выше, при холостом ходе магнитный поток создается обмоткой возбуждения. В явнополюсной машине магнитный поток Ф0 направлен по продольной оси d-d, рис 85. Так как магнитное сопротивление по продольной d-d и поперечной осям различное, то в явнополюсной машине все процессы рассматривают по двум осям – продольной d-d вдоль индуктора и поперечной q-q оси. Если теперь замкнуть обмотку статора (якоря) на нагрузку, то под действием ЭДС Е0 по обмотке будет протекать ток, который создает свой магнитный поток. Взаимодействие потока якоря с потоком обмотки возбуждения называется реакцией якоря. Намагничивающая сила ротора вращается с синхронной скоростью, вращение магнитного поля статора также синхронное (n1=60f1/p), т.е. они друг относительно друга неподвижны. Однако действие реакции якоря зависит от характера нагрузки. Нагрузка может быть активной, индуктивной, емкостной, либо смешанной. При рассмотрении реакции якоря на статоре будем изображать одну фазу вместо трех. Из общей теории машин переменного тока известно, что ось потока трехфазной обмотки совпадает с осью той фазы, где ток максимален, поэтому рассмотрим случай, когда ток в одной из фаз статора максимален.

V-2-1. Реакция якоря при активной нагрузке

Рис 85.

Кривая намагничивающей силы ротора есть синусоида. Кривая намагничивающей силы реакции якоря так же синусоидальная. Реакция якоря на набегающем крае размагничивает основной поток, а на сбегающем крае намагничивает. Как видно из рис 85 при активной нагрузке реакции якоря поперечная. Намагничивающая сила Faq – намагничивающая сила поперечной реакции якоря.

Если машина неявнополюсная, то Faq дает нам в каком-то масштабе кривую распределения индукции. А для машин с явными полюсами эта кривая не будет аналогична кривой распределения индукции, так как зазор по осям не одинаков. Поэтому в кривой индукции появляются провалы в межполюсных местах из-за большого магнитного сопротивления.

Однако с такой кривой индукции Baq иметь дело не удобно, поэтому предпочитают сводить эту кривую к эквивалентной синусоиде, имеющей равную площадь, при этом поступают следующим образом: намагничивающую силу F1aq соответствующую эквивалентной синусоиде, определяют F1aq=Faq*Kq, где Kq-коэфициент поперечной реакции якоря и зависит от коэффициента магнитного перекрытия для машин Kq=0.2-0.5.

Определив, таким образом, эквивалентную синусоиду, можно найти поток. Таким образом, при чисто активной нагрузке реакция якоря – поперечная.

V-2-2. Реакция якоря при индуктивной нагрузке

Теперь рассмотрим случай, когда нагрузка генератора чисто реактивная, т.е. ток якоря отстает от ЭДС на 90. Если нагрузка индуктивная и ток отстает от ЭДС на 90, то взаимное расположение полюсов и активных сторон фазы, в которых будет максимальный ток будет тогда, когда ротор уйдет на половину полюсного деления (на 90 эл. градусов). Магнитные линии потока якоря будут замыкаться иначе, чем в первом случае. Поток якоря, при этом, будет проходить по тому же пути, что и поток обмотки возбуждения, но направлен встречно. Поэтому если нагрузка чисто индуктивная, то реакция якоря будет продольно размагничивающая. На рис 86 представлена картина пространственного расположения потоков, в развернутом виде представлены н.с. F0 и Faq и векторная диаграмма при чисто индуктивном характере нагрузки. Кривая распределения индукции якоря для явнополюсной машины также будет иметь провалы.

Здесь также действительную кривую распределения индукции заменяют эквивалентной синусоидой.

F1ad=Fad*Kd, где Kd – коэффициент продольной реакции якоря. Kd=0.8-0.95 таким образом, при индуктивной нагрузке реакция якоря будет продольной и будет действовать размагничивающим образом.

V-2-3. Реакция якоря при емкостной нагрузке

При емкостной нагрузке ток якоря опережает ЭДС на 90 эл. градусов. Поэтому максимум тока в фазе наступает тогда, когда северный полюс не дойдет до фазы статора на 90. При этом поток якоря и поток обмотки возбуждения будут направлены в одну сторону (см. рис. 87) и реакция якоря будет продольно намагничивающая.

Рис. 87.

V-2-4. Реакция якоря при смешанной нагрузке

В действительности у синхронных генераторов таких идеальных случаев нагрузки нет. Реально нагрузка генератора активно-индуктивная, либо активно емкостная. Рассмотрим активно-индуктивный характер нагрузки. При этом ток разлагают по осям. Активная составляющая будет давать поперечную реакцию якоря, а реактивная – продольную. Рассмотрим случай, когда ток отстает от ЭДС на угол ψ. Для определения влияния реакции якоря нужно выделить активную и реактивную составляющие тока.

Рис 88.

Ток Iq создает намагничивающую силу Faq, а ток Id намагничивающую силу Fad. Faq будет искажать магнитный поток, а Fad размагничивать. Реакция якоря определяется путем разложения, рис. 88.

V-3. Рабочий процесс синхронной машины

Наиболее важной величиной для синхронного генератора является напряжение. Оценка генератора производится по изменению напряжения. Показателем изменения напряжения является относительное изменение напряжения – это разность между напряжением машины при холостом ходе и напряжением при нормальной нагрузке выраженная в процентах от Uн.

Устанавливается эта величина при постоянстве тока возбуждения и при постоянстве числа оборотов. При автономной работе машины величина ΔU может достигнуть 30%- 50%. Уменьшение напряжения обусловлено реакцией якоря и падением напряжения на реактивном сопротивлении. Синхронные машины изучаются с применением векторных диаграмм, где используются либо диаграммы ЭДС, либо диаграммы намагничивающих сил с учетом насыщения.

V-3-1. Основная диаграмма ЭДС явнополюсного синхронного генератора

При построении этой диаграммы используется метод двух реакций. Разлагают реакцию якоря на поперечную и продольную и строят диаграмму. При холостом ходе существует поток Ф0. При нагрузке появляется поток якоря Фа. В результате взаимодействия Ф0 и Фа образуется результирующий поток Фδ. И так, при нагрузке реально существует два потока, это результирующий поток Фδ и поток рассеяния Фs.

Для построения диаграммы предполагается, что в синхронной малине существуют независимые потоки:

Ф0 – основной поток возбуждения,

Фaq – поток поперечной реакции якоря,

Фad – поток продольной реакции якоря,

Фs – поток рассеяния.

Эти потоки в обмотке якоря будут индуцировать свои ЭДС, а сумма этих ЭДС дает на выходе напряжение генератора. Каждая ЭДС будет отставать от своего потока на 90 эл. гр.

Ф0 → Ė0

Iq → Фad → Ėaq

Id → Фad → Ėad Ur

Фs → Ės

Ėa = -Ir1

Исходя из этого, построим основную диаграмму ЭДС для явнополюсной синхронной машины, рис 89.

I

Рис. 89

Поток Ф0 наводит в обмотке якоря ЭДС Е0, поток ФS наводит ЭДС ES.

где: Iq и Id – активная и реактивная составляющие тока якоря. Используя эту диаграмму можно получить углы θ и φ, а также Ur. Токи Iq и Id создают потоки Фad и Фaq которые создают в обмотке якоря ЭДС Ead и Eaq. Сложив геометрически все эти ЭДС, получим на зажимах машины выходное напряжение генератора Ur. Но в современной теории синхронных машин пользуются рядом параметров, для обоснования которых основную диаграмму ЭДС необходимо преобразовать. Если ЭДС рассеяния Es = Ixs, то остальные ЭДС можно выразить аналогичным выражением.

V-3-2. Преобразованная диаграмма ЭДС явнополюсной синхронной машины

Преобразование будет сводиться к тому, что, разложив ЭДС рассеяния по осям, и прибавив их к ЭДС Ead и Eaq, получим из 3 ЭДС две и попутно получим выражение индуктивных сопротивлений синхронных машин.

CN=BM=Essinψ=IXssinψ

AB=Ead=IdXad=IXadsinψ

AM=CN+AB=IXssinψ+IXadsinψ=Isinψ(Xs+Xad)=IdXd=Ed,

Xd=Xs+Xad, где Xd – синхронное индуктивное сопротивление по продольной оси. Xs – индуктивное сопротивление рассеяния. Xad – индуктивное сопротивление реакции якоря по продольной оси.

Далее: DN=Escosψ=IXscosψ

ВС=MN=Eaq=IqXaq=IcosψXaq

DM=DN+MN=IXscosψ+IcosψXaq=Icosψ(Xs+Xad)=IqXq=Eq,

Xq=Xs+Xaq, Xq – синхронное индуктивное сопротивление по поперечной оси. Xaq – индуктивное сопротивление реакции якоря по поперечной оси, где IXaq=Eaq/cosψ.

Индуктивные сопротивления Xd, Xq, Xs, Xad, Xaq обычно приводятся в относительных единицах. Построим преобразованную диаграмму, рис.90.

Рис. 90.

Векторные диаграммы ЭДС неявнополюсных синхронных машин, рис. 91, рис. 92.

Рис. 91 Рис. 92.

На рис. 91 представлена диаграмма ЭДС выраженная через вектора отдельных ЭДС, а на рис.92 диаграмма ЭДС выражена через падения напряжения. На этих диаграммах ток якоря I не разлагается по осям.

V-4. Определение параметров синхронной машины по снятым характеристикам

V-4-1. Определение синхронного индуктивного сопротивления Xd (ненасыщенного)

Для определения ненасыщенного Xd снимаются две характеристики:

а) Характеристика холостого хода E0=f(iB), Ia=0, n=const

б) Характеристику короткого замыкания Ik=f(iB), U=0 (трехфазное короткое замыкание).

Рис. 93 Рис. 94

Из рис. 94 видно, что сумма ЭДС Е0, Ead, Es равна нулю, откуда

E0=IkXs+IkXad=Ik(Xs+Xad)=IkXd, откуда Xd=E0/Ik1., Хdнен= , рис. 93.

Обычно Xd берется в относительных единицах:

Xd*=

=

=

=

XdIн E01Iн Е01Iн E01 , где E01 - ненасыщеннозначение ЭДС.

Uн Iк1Uн UнIк1 Uн(Iк1/Iн)

Обозначим отношение Eo1/Uн=С, а Iк1/Iн=ОКЗ, при

Из рисунка 93 видно, что отношение токов

1/Iн = iB0/iBк = ОКЗ

ОКЗ выражает отношение тока возбуждения соответствующего номинальному напряжению при холостом ходе, к току возбуждения соответствующего номинальному току статора при трехфазном коротком замыкании. Значение ОКЗ влияет на габариты машины и на ток короткого замыкания. Если машина не насыщена, то Е01/Uн = 1, тогда ОКЗ = 1/Xd*

Рис. 95 Рис. 96

Если машина имеет малый зазор (рис 95), то магнитная проводимость потоку якоря Фad будет большая, а следовательно Xd будет большим. При изменении нагрузки будет сильное колебание напряжения, и машина будет работать неустойчиво, но зато она экономична, т.к. диаметр статора мал и расход стали, и меди будет наименьшим. Если машина имеет большой воздушный зазор δ, то магнитная проводимость потоку якоря Фad будет мала и Xd будет малым, рис.96 При изменении нагрузки напряжение будет мало колебаться и машина будет устойчиво работать с сетью. Но т.к. диаметр якоря большой , то машина получится не экономичной, т.е. большой расход стали и меди статора (якоря). Кроме того ОКЗ характеризует значение установившегося тока короткого замыкания: Iк.ном = ОКЗ*Iном, который возникает при номинальном токе возбуждения генератора (соответствующем номинальному напряжению). В современных синхронных явнополюсных машинах средней и большой мощности

Xd*= 0.6-1.6, Xq*= 0.4-1

При указанных выше значениях Xd*,Xq*, для неявнополюсных машин ОКЗ = 0.8-1.8. Следовательно установившийся ток короткого замыкания в синхронных машинах сравнительно невелик, т.к. при этом режиме создается продольно размагничивающая реакция якоря и Фрез.к < Фв.

Для практических целей целесообразно иметь машину с большим ОКЗ, однако это требует выполнение ее с большим воздушным зазором, что существенно удорожает машину.

V-4-2. Определение параметра Xd насыщенного

Для определения насыщенного Xd используют две характеристики:

  1. Характеристика холостого хода: Е0=f (iB), I=0.

  2. Нагрузочную индукционную характеристику: U=f (iB), Iн = const, cosφ = 0.

Рис. 97

При снятии индукционной характеристики ток отстает от Е0 на 900. При нагрузке I=Iн, cosφ=0 напряжение будет падать за счет индуктивного сопротивления Xs IнXs и Xad IнXad, обусловленного реакцией якоря, т.е (Xs + Xad)Iн = IнXd, что показано на рис. 97. На рис. 98 показаны характеристики и путь определения Xd, т.е.

Из рис. 98 видно, что с насыщением машины, Xd уменьшается.

Рис. 98.

V-4-3. Определение параметра Xq

Если машина неявнополюсная, то практически принимают, что Xq=Xd, если же машина явнополюсная, то магнитная проводимость по поперечной оси q-q будет меньше, чем по продольной, поэтому Xq<Xd, для практических целей принимают, что Xq = 0.6Xd.

V-4-4. Определение параметров Xq и Xd методом скольжения

На машину подается пониженное напряжение U=(0.1-0.2)Uн. Ротор вращают асинхронно и возбуждают машину.

Если магнитный поток якоря совпадает с осью полюсов, то магнитная проводимость большая и сопротивление большое, а ток мал, поэтому

Е сли магнитный поток якоря будет расположен по оси q-q, то магнитная проводимость ему будет мала, а следовательно индуктивное сопротивление будет малым, а ток большим, поэтому

т.к. скольжение обычно наибольшее, то колебание тока можно определить по прибору, но лучше брать его на осциллографе.

V-4-5. Определение параметра Xs

Для определения этого параметра необходимо иметь следующие характеристики:

  1. Характеристика холостого хода E0=f(iB), I=0.

  2. Нагрузочную индукционную характеристику U=f(iB), Iн = const, cosφ = 0.

  3. Характеристика трехфазного, короткого замыкания IК=f(iB), U=0.

Эти характеристики представлены на рис. 99.

Рис 99.

iBk = iBs + iBa.

Если бы было известно Xs то можно построить треугольник АВС, где катет СА=iBa – это ток возбуждения, который идет на компенсацию реакции якоря. При коротком замыкании сопротивлением r1 можно пренебречь, ток отстает от Е0 на 900, т.е. реакция якоря при Iн будет продольно размагничивающей. Катет ВС = IнXs. У индукционной нагрузочной характеристики, ток Iн и cosφ=0, поэтому и здесь реакция якоря продольно размагничивающая. Поэтому катеты С1А1=СА и В1С1 = ВС. На этом основании и определяется параметр Xs в следующем порядке:

По номинальному ток Iн по характеристике короткого замыкания определяем ток iBк= =ОА. Затем для номинального напряжения на индукционной характеристике находим точку А1. Влево от нее откладываем отрезок О1А1 = ОА через точку О1 проводим линию, параллельную начальной части характеристики холостого хода, до пересечения c характеристикой Х.Х. получим точку В1. Соединив точку В1 с А1 о опустив перпендикуляр на линию О1А1 получим тот же треугольник А1В1С1, где катет В1С1 = IнXs, отсюда Xs=B1C1/Iн. Если машина неявнополюсная, то Xs = Xp. Для явнополюсной машины Xp>Xs на 10-20%, где ХР – реактивность Потье

V-5. Параллельная работа синхронных генераторов

Обычно на электростанциях устанавливают несколько синхронных генераторов для параллельной работы на общую электрическую сеть. Это обеспечивает увеличение общей мощности электростанции, повышает надежность электроснабжения потребителей и позволяет лучше организовать обслуживание агрегатов. Электрические станции, в свою очередь, объединяются для параллельной работы в мощные энергосистемы, позволяющие наилучшим образом решать задачу производства и распределения электрической энергии. Таким образом, для синхронной машины, установленной на электрической станции подключённой к энергосистеме, типичным является режим работы на сеть большой мощности, то напряжение сети Uс и её частота fс являются постоянными.

При параллельной работе всегда выдвигаются ряд условий. К таким условиям относятся:

1. Одинаковая форма кривых ЭДС генераторов. При изготовлении синхронных генераторов на заводах форма кривой ЭДС практически близка к синусоиде.

2. равенство напряжений и их противоположность( по контуру двух машин). При равенстве и противоположности напряжений генераторов нет уравнительных токов в цепи генераторов.

3. Равенство частоты ЭДС генераторов.

4. Порядок чередования фаз должен быть одинаковым.

Этих условий достаточно для нормальной параллельной работы генераторов.

Рассмотрим нарушение этих условий.

V-5-1. Параллельная работа генераторов при неравенстве напряжений.

П ри равенстве напряжений (рис.100) в цепи генераторов нет уравнительного тока.

Теперь допустим, что напряжение сети Uс больше ЭДС подключаемого генератора, т.е. Uс>Uг. За счёт их разности появится U.Под действием U по обмоткам генераторов потечёт уравнительный ток- Iур.

По отношению к генератору (Uг) уравнительный ток является ёмкостным, который создаёт намагничивающую реакцию якоря. Поэтому у подключаемого генератора возрастает поток и увеличивается напряжение генератора, рис 100.

Уравнительный ток по отношению к генератору (Uc), является чисто индуктивным, поэтому он создает размагничивающую реакцию якоря. Это приведет к снижению напряжения генератора в сети (Uc), т.е. роль уравнительного тока сводится к выравниванию напряжений генераторов. При включении генератора на параллельную работу уравнительный ток является реактивным и механического удара не создается, но дополнительно нагревает обмотки якоря.

V-5-2. Параллельная работа генераторов при