Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЭлМаш(лекция.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
3.68 Mб
Скачать

Г енератор смешанного возбуждения широко используется в промышленности. Обмотки возбуждения по потоку могут быть включены согласно, либо встречно, рис. 57.

1

Рис.57

. Характеристика холостого хода , , .

При холостом ходе ток якоря равен нулю, поэтому обмотка возбуждения не создает потока. Следовательно, характеристика холостого хода аналогична генератору параллельного возбуждения.

2 . Нагрузочная характеристика ,

Нагрузочная характеристика (3) для генератора параллельного возбуждения.

Н

Рис.58

агрузочная характеристика (2) для генератора смешанного возбуждения при согласном направлении токов. Поэтому, последовательная обмотка играет роль компенсатора реакции якоря и характеристика (2) проходит выше характеристики холостого хода, рис.58

3 . Внешняя характеристика , , .

У генератора смешанного возбуждения при различном соотношении и направлении потоков можно получить характеристики различного вида.

Е

Рис.59

сли потребители находятся вдали от генератора, то обмотку возбуждения по току выполняют значительной, что дает повышенное напряжение с учетом падения напряжения в сети (характеристика 1), рис.59. Для нормального режима используется характеристика 2.

Характеристика 3 – экскаваторная характеристика, которая получена при встречном включении обмоток.

4 . Регулировочная характеристика , , рис.60.

Регулировочные характеристики практически можно снять, соответственно внешним характеристикам 1 и 2.

Рис.60

якоря . Электромагнитный момент .

IV-6. Двигатели постоянного тока

Двигатели постоянного тока широко используются в различных системах электропривода, где требуется широкий диапазон регулирования частоты вращения. Двигатель постоянного тока преобразовывает потребляемую электрическую энергию в механическую на валу, хотя машина постоянного тока обратима. Покажем принцип перевода генератора в режим двигателя, рис. 61.

Д

Рис.61

ля генератора , откуда ток генератора .

С увеличением сопротивления ток уменьшается, следовательно, уменьшится и ток . При дальнейшем увеличении будет равна напряжению U и ток генератора будет равен нулю. Далее с увеличением ток уменьшится, а, следовательно, уменьшится и . При этом и ток из сети сменит направление, а машина перейдет в двигательный режим. Уравнение равновесного состояния для двигателя: , , , тогда .

Получено уравнение скоростной характеристики двигателя постоянного тока. Уравнение моментов для двигателя записывается: .

IV-6-1. Пуск двигателей постоянного тока

У

Рис.62

равнение равновесного состояния двигателя , откуда ток равен: .

П ри пуске двигателя ,следовательно и пусковой ток может быть больше номинального в раз. Это может привести к круговому огню на коллекторе и механической поломке двигателя. Поэтому, для ограничения пускового тока до используют пусковые реостаты, либо пусковые станции и ток при этом равен .

П

Рис.63

о мере разгона якоря в нем наводится, и ток якоря уменьшается. Поэтому, после разгона якоря пусковые сопротивления в цепи якоря выводятся. Схема контактного пуска представлена на рис. 62.

В ременная диаграмма пуска двигателя представлена на рис. 63.

Пуск по пусковым характеристикам представлен на рис. 63.

Для пуска двигателей небольшой мощности используют пусковые реостаты. Схема пускового реостата представлена на рис. 64.

П

Рис.64

ри пуске движок реостата находится в положении (1), после пуска в положении (2).

IV-6-2. Реверсирование двигателя постоянного тока

Электромагнитный момент

Е

Рис.65

сли изменить направление тока в якоре, то сила действующая на проводник с током изменит направление, а, следовательно, изменится и направление вращения рис. 65. К такому же результату приведет изменение полюсов (изменение направления тока обмотки возбуждения). Таким образом, для реверсирования необходимо либо изменить направление тока в якоре, либо изменить направление тока в обмотке возбуждения (изменить полюса). Если на входе двигателя изменить + на - , то поток и ток якоря изменят направление, а момент останется тем же как и направление вращения.

IV-6-3. Классификация двигателей постоянного тока

Двигатели постоянного тока классифицируются в зависимости от способа соединения обмотки возбуждения с якорем:

1. Двигатель параллельного возбуждения (если напряжение обмотки возбуждения иное, то такой двигатель называется двигателем независимого возбуждения).

2 . Двигатель последовательного возбуждения.

3. Двигатель смешанного возбуждения.

IV-6-3-1 Двигатели параллельного возбуждения

Принципиальная схема включения двигателя параллельного возбуждения представлена на рис. 66. Для пуска используется пусковой реостат (п. р.). Свойства двигателя определяются его характеристиками.

1

.Скоростная характеристика, зависимость , ,

С коростная характеристика при называется естественной, рис. 67. Если , то характеристика называется реостатной. Так как сопротивление якоря , как правило мало, то с увеличением тока якоря падение напряжения в якорной цепи мало и скорость уменьшается незначительно. Поэтому, естественная характеристика двигателя получается жесткой.

2.Моментная характеристика, зависимость , . На рис. 67. Представлена моментная характеристика, где

3.Механическая характеристика, зависимость скорости от момента, .

, определим ток якоря через момент, , откуда , это выражение подставим в исходное уравнение, получим механическую характеристику: , .

Механические характеристики при разных сопротивлениях представлены на рис. 68, где , т. е. механическая характеристика при также жесткая. Это определяет область использования этих двигателей (трансмиссии, вентиляторы, системы ГД для привода станков).

У

Рис.68

словия устойчивой работы агрегата