
- •1) Кинематическое описание движения. Радиус - вектор. Перемещение. Путь. Скорость и ускорение. Нормальное и касательное ускорение
- •2) Угловая скорость и угловое ускорение. Связь между угловыми и линейными характеристиками
- •3) Основная задача динамики
- •4) Масса, импульс, сила. Силы в механике.
- •5) Законы Ньютона.
- •6) Момент силы и момент импульса тела.
- •8) Законы сохранения импульса и момента импульса - фундаментальные законы природы. Применение этих законов к решению задач механики.
- •9) Энергия, как единая мера различных форм движения материи. Работа. Вычисление работы переменной силы. Мощность. Кинетическая энергия.
- •10) Кинетическая энергия и работа при вращательном движении.
- •11) Консервативные и неконсервативные силы. Потенциальное поле сил. Потенциальная энергия и ее связь с силой, действующей на материальную точку.
- •12) Закон сохранения и изменения механической энергии.
- •17)Статистический и термодинамический методы исследования. Термодинамические системы, параметры, процессы
- •18)Молекулярно-кинетическая теория газов (мкт). Основное уравнение мкт для давления. Температура с точки зрения мкт
- •19)Закон равномерного распределения энергии по степеням свободы молекул. Средняя энергия молекул. Внутренняя энергия идеального газа
- •20) Закон Максвелла для распределения молекул по скоростям и энергиям
- •21)Барометрическая формула. Закон Больцмана для распределения частиц во внешнем потенциальном поле.
- •22)Внутренняя энергия системы, работа и теплота
- •23)Первое начало термодинамики и его применение к изопроцессам идеальных газов. Адиабатный процесс
- •24)Обратимые и необратимые процессы. Цикл. Тепловые машины. Цикл Карно и его к. П. Д.
- •26) Второе начало термодинамики.
- •28.Электрический заряд. Закон сохранения электрического заряда. Закон Кулона
- •29. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции. I Іапряженность поля точечного заряда.
- •32. С вязь между напряженностью электрического поля и потенциалом.
- •34. Основная задача электростатики. Методы ее решения.
- •36. Диэлектрики. Дипольные моменты молекул диэлектриков. Поляризация диэлектриков. Поляризованность.
- •37. Теорема Гаусса для электрического поля в среде. Электрическое смещение. Вычисление поля в диэлектриках.
- •38. Распределение заряда на проводнике. Проводник во внешнем электрическом поле. Электростатическая защита.
- •39. Емкость удлиненного проводника. Вывод формулы емкости сферы. Конденсаторы.
- •40. Энергия взаимодействия системы электрических зарядов.
- •41. Энергия заряженного проводника и конденсатора.
- •42. Энергия и плотность энергии электрического поля.
- •43.Электрический ток. Сила и плотность тока. Условия существования постоянного тока.
- •44.Законы Ома и Джоуля - Ленца в дифференциальной и интегральной формах.
- •45. Сторонние силы. Э. Д. С. Обобщенный закон Ома.
- •46.Работа и мощность тока.
- •47. Магнитное поле. Вектор магнитной индукции, силовые линии магнитного поля. Принцип суперпозиции.
- •48. Закон Био-Савара-Лапласа. Поле прямого и кругового токов.
- •49. Магнитный поток. Основные теоремы магнитостатики в вакууме. Магнитное поле соленоида и тороида.
- •50. Сила лоренца и сила Ампера. Взаимодействие токов. Движение заряженных частиц в магнитном и электрическом полях.
- •51.Рамка с током в магнитном поле. Момент сил, действующий на рамку в магнитном поле. Магнитный момент.
- •52.Работа перемещения проводника и контура с током в магнитном поле.
- •53.Магнитное поле в веществе. Магнетики. Закон полного тока для поля в веществе. Напряженность в магнитном поле.
- •54.Явление электромагнитной индукции. Закон Фарадея- Максвелла. Правило Ленца.
- •55.Самоиндукция.Индуктивность. Индуктивность длинного соленоида.
- •56.Токи при замыкании и размыкании цепи (экстратоки).
- •57. Энергия и плотность энергии магнитного поля.
- •58. Общая характеристика теории Максвелла для электромагнитного поля. Вихревое электрическое поле, первое уравнение Максвелла.
- •60.Понятия о колебательных процессах. Гармонические колебания (гк), их характеристики. Представление гк в аналитическом, графическом виде и спомощью векторных диаграмм.
- •61.Дифференциальное уравнение гк. Гармонические осцилляторы: маятники, груз на пружине, колебательный контур.
- •62.Волновые процессы. Продольные и поперечные волны. Уравнение волны.
- •63.Фазовая скорость, длина волны, волновое число.
- •64.Волновое уравнение. Энергия волны, поток энергии, вектор Умова.
- •65.Принцип суперпозиции волн. Групповая скорость и её связь с фазовой
- •68. Излучение диполя.
- •69. Тепловое равновесное излучение и его характеристики. Закон Кирхгофа.
- •70. Абсолютно черное тело. Законы излучения абсол.Тно черного тела.
- •71. Гипотеза Планка о квантовом характере излучения. Формула Планка.
- •72) Фотоэлектрический эффект. Законы и квантовая теория внешнего фотоэффекта.
- •73) Эффект Комптона, его теория явления.
- •74) Фотоны. Энергия, масса, импульс фотона
- •75) Связь волновых и корпускулярных свойств излучения(Корпускуля́рно-волново́й дуали́зм).
- •76) Корпускулярно-волновая двойственность свойств частиц вещества. Гипотеза Де Бройля
- •77. Соотношение неопределенностей Гейзенберга
- •78. Принципиальное отличие задания состояния частицы в квантовой и классической механике. Волновая функция и ее статистический смысл.
- •79. Понятие об уравнении Шредингера как основа уравнение нерелятивистской квантовой механики. Принцип соответствия Бора.
- •80.Решение уравнения Шредингера для атома водорода.
76) Корпускулярно-волновая двойственность свойств частиц вещества. Гипотеза Де Бройля
Французский ученый Луи де Бройль (1892—1987), осознавая существующую в природе симметрию и развивая представления о двойственной корпускулярно-волновой природе света, выдвинул в 1923 г. гипотезу об универсальности корпускулярно-волнового дуализма. Де Бройль утверждал, что не только фотоны, но и электроны и любые другие частицы материи наряду с корпускулярными обладают также волновыми свойствами.
Итак, согласно де Бройлю, с каждым микрообъектом связываются, с одной стороны, корпускулярные характеристики — энергия Е и импульс p, а с другой —волновые характеристики — частота n и длина волны l. Количественные соотношения, связывающие корпускулярные и волновые свойства частиц, такие же, как для фотонов:
Смелость гипотезы де Бройля заключалась именно в том, что соотношение (213.1) постулировалось не только для фотонов, но и для других микрочастиц, в частности для таких, которые обладают массой покоя. Таким образом, любой частице, обладающей импульсом, сопоставляют волновой процесс с длиной волны, определяемой по формуле де Бройля:
Это соотношение справедливо для любой частицы с импульсом р.
Вскоре гипотеза де Бройля была подтверждена экспериментально. В 1927 г. американские физики К. Дэвиссон (1881—1958) и Л. Джермер (1896—1971) обнаружили, что пучок электронов, рассеивающийся от естественной дифракционной решетки — кристалла никеля, — дает отчетливую дифракционную картину. Дифракционные максимумы соответствовали формуле Вульфа — Брэггов (182.1), а брэгговская длина волны оказалась в точности равной длине волны, вычисленной по формуле (213.2). В дальнейшем формула де Бройля была подтверждена опытами П. С. Тартаковского и Г. Томсона, наблюдавших дифракционную картину при прохождении пучка быстрых электронов (энергия »50 кэВ) через металлическую фольгу (толщиной »1 мкм).
77. Соотношение неопределенностей Гейзенберга
Соотношение неопределенности Гейзенберга представляется как одно из основных, фундаментальных положений квантовой механики. Приводим характеристику, данную этому соотношению Л. Д. Ландау:“Открытие принципа неопределенности показало, что человек в процессе познания природы может оторваться от своего воображения, он может открыть и осознать даже то, что ему не под силу представить”.
Точка зрения Ландау отражает распространенное мнение о соотношении неопределенности Гейзенберга. Рассмотрим положения, в основном, сформулированные авторами квантовой механики, связанными с изложением и трактовкой этого соотношения, которые могут оправдать приведенную характеристику.
1. “Классическая физика как раз и кончается в том месте, где нельзя уже отказаться от учета влияния наблюдателя на исследуемые процессы” ,“Невозможность отдалить самостоятельное поведение от их взаимодействия с измерительными приборами, предназначенных для изучения условий протекания явления, влечет за собой неоднозначность в приписывании обычных атрибутов атомным явлениям. Это обстоятельство вызывает необходимость пересмотра нашего отношения к проблеме физического объяснения”.
Данный фактор, в действительности, имеет место и в процессе обычных измерений, описываемых с помощью классической механики. Но влияние измерительного прибора и методики измерения либо учитывается и вводится поправка, либо результат измерений фигурирует как условный, т. е. оговаривается методика. Во всяком случае, этот фактор достаточно очевидный и не выглядит парадоксальным.
2. “Специфическая неточность, обусловленная соотношением неопределенности, в классической физике отсутствует”.
“В квантовой механике мы встречаемся с парадоксальной ситуацией — наблюдаемые события повинуются закону случая… Сегодня порядок идей обратный [по сравнению с “предвзятыми идеями о причинности”]: случайность стала первичным понятием”. “С точки зрения квантовой теории нет никакой причины, по которой [например] распались имменно эти ядра, они распались “просто так”, спонтанно. Квантовая теория предсказывает лишь вероятность распада ядер”.
В данном случае отрицается наличие причины происходящих явлений. Это часто используемый в квантовой механике способ “решения научных задач”: проблема “закрывается” путем провозглашения соответствующего “закона” или “принципа”. Для Борна “детерминизм” являлся ярлыком, характеризующим неприятие “современной” науки. Его совершенно не устраивала и “компромиссная” теория “скрытых переменных”.
В основе мистического миропонимания лежит аналогичное восприятие необъяснимого: подразумевается, что феномен, недоступный нашему пониманию, находится вне сферы возможности его объяснения.
Следует отметить, что не все классики квантовой механики придерживались этой теории, в частности, против нее решительно выступал Планк: “eсли подобный шаг оказался бы действительно необходимым, то тем самым цель физического исследования была бы значительно отброшена назад, что нанесло бы значительный ущерб, значение которого нетрудно оценить”. Тем не менее, подобное толкование “принципа неопределенности” вошло в ортодоксальную науку.
3. Соотношение неопределенности ряд авторов рассматривал как отражение волновых свойств частиц — следствие корпускулярно-волнового дуализма. “Соотношения неопределенности Гейзенберга непосредственно вытекают из положения, что элементами новой картины мира являются не материальные частицы, а простейшие периодические волны материи”. “Соотношения неопределенности следуют из способа которым связываются с помощью постоянной h корпускулярная и волновая сторона единых объектов вещества и излучения”.
Однако эта точка зрения не является обоснованной, о чем, в частности, свидетельствует вывод соотношения Гейзенбергом без “непосредственного обращения к волновой картине с помощью математической схемы квантовой теории”.
4. Соотношение неопределенности Гейзенберга показывает, что “между точностью, с которой одновременно может быть установлено положение частицы, и точностью ее импульса существует определенное соотношение” :
q
p ≥ h ,
(1)
где
—
среднеквадратичное отклонение.
Нетрадиционное обозначение в формуле
вводится для того, чтобы подчеркнуть
отличие
от
единичного отклонения, которое часто
обозначается символом D , что
в отдельных случаях вызывает неверное
толкование формулы.
О неприятии данного соотношения в период становления квантовой теории свидетельствуют дискуссии между Эйнштейном и Бором и, в частности, т. н. “парадокс Эйнштейна – Подольского – Розена”, в котором предполагается “мысленное” одновременное измерение импульса и координаты у двух частиц – “двойников”.
Характерная деталь: анализ приведенного выражения проводится так, как будто это эмпирическая формула, а не соотношение, полученное аналитическим путем. В результате трактовка соотношения оказывается не связанной с предпосылками и условностями, которые подразумевались при его выводе, и это является одной из причин тех парадоксов, которые связываются с данным соотношением. Конкретно, эти противоречия отметим в заключении нашего анализа.
Приводим относительно простой вывод соотношения, делая упор на исходные постулаты и условности.
1. В основе соотношения лежит формула Планка, отражающая положение о квантовании “действия”:
E = nh (E —энергия фотона, n — частота электромагнитной волны)
или ее следствия:
(p
— импульс, l — длина волны).
Приращение “действия”, соответствующее h ,
DSh = p Dq (Dq — приращение координаты)
или при одновременном изменении p и q:
DSh = Dp Dq .(2)
2. Отметим, что проявление импульса невозможно без перемещения, а проявление энергии — вне времени. Под “проявлением” подразумевается регистрация путем взаимодействия объекта с наблюдателем, с измерительным прибором. Это условие справедливо и в классической механике.
3. В случае использования соотношения неопределенности, а возможно и в общем случае, измеряется “действие”, а не его компоненты — импульс, координаты, энергию, время.
Знаменательно — в действии объединены три основополагающие понятия: сила, длина, время. Измерительный же прибор “отградуирован”, соответственно, на импульс, координаты, энергию и время.
4. Неопределенность — это принципиальная невозможность определить величину параметра, а не результат влияния помех или ошибки измерения, подчиненных вероятностным законам, если их точное воздействие неизвестно.
Неопределенность, которую нельзя устранить, имеет место и в классической механике, она просто объясняется и легко воспринимается. Это случай, когда ограничена разрешающая способность конкретного измерительного инструмента: слишком велика при измерении “цена деления”, т. е. измерение осуществляется с помощью определенного шаблона, а требуется точность более высокая, чем та, что обеспечивается размерами или другими параметрами шаблона. Ни у кого, например, не вызывает удивления, что величина разрешения, достигаемого микроскопом, ограничена длиной волны в луче освещения. Эта неопределенность не связана с нашим незнанием причины погрешности, тем более, что этой причины не существует — у нас нет методики или инструмента для более точного определения измеряемого параметра.
5. В соотношении неопределенность рассматривается как фактор, вызывающий ошибку. Следовательно, формально предполагается стремление получить большую точность, чем та, которая может обеспечить дискретная величина кванта действия.