Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Referat_Vremennye_ryady.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
855.55 Кб
Скачать

П.7 Тренд и его анализ.

Тренд или тенденция временного ряда – это несколько условное понятие. Под трендом понимают закономерную, неслучайную составляющую временного ряда (обычно монотонную), которая может быть вычислена по вполне определенному однозначному правилу. Тренд временного ряда часто связан с действием физических законов или каких-либо других объективных закономерностей. Однако, вообще говоря, нельзя однозначно разделить случайный процесс или временной ряд на регулярную часть (тренд) и колебательную часть(остаток). Поэтому обычно предполагают, что тренд - это некоторая функция простого вида (линейная, квадратичная и т.п.), описывающая “поведение в целом” ряда или процесса. Если выделение такого тренда упрощает исследование, то предположение о выбранной форме тренда считается допустимым. Для временного ряда уравнение линейного тренда имеет вид

(13)

При r>0 говорят о положительном тренде (с течением времени значения временного ряда имеет тенденцию возрастать), при r<0 об отрицательном (тенденция убывания). При r, близких к нулю, иногда говорят о боковом тренде. Как было сказано выше, для случая, когда t=1,2,3,...n, имеем:

однако на практике не стоит отдельно вычислять r и и только потом подставлять их в уравнение тренда. Лучше прямо в формуле тренда произвести сокращения, после которых она примет вид: (14)

После выделения линейного тренда нужно выяснить, насколько он значим. Это делается с помощью анализа коэффициент корреляции. Дело в том, что отличие коэффициента корреляции от нуля и тем самым наличие реального тренда (положительного или отрицательного) может оказаться случайным, связанным со спецификой рассматриваемого отрезка временного ряда. Другими словами, при анализе другого набора экспериментальных данных (для того же временного ряда) может оказаться, что полученная при этом оценка намного ближе к нулю, чем исходная (и, возможно, даже имеет другой знак), и говорить о реальном тренде тут уже становится трудно. [6]

П. 8 Автокорреляция уровней временного ряда

При наличии во временном ряде тенденции и циклических колебаний значения каждого последующего уровня ряда зависят от предыдущих. Корреляционную зависимость между последовательными уровнями временного ряда называют автокорреляцией уровней ряда.

Количественно ее можно измерить с помощью линейного коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми на несколько шагов во времени.

Формула для расчета коэффициента автокорреляции имеет вид:

(15)

где

Эту величину называют коэффициентом автокорреляции уровней ряда первого порядка, так как он измеряет зависимость между соседними уровнями ряда и .

Аналогично можно определить коэффициенты автокорреляции второго и более высоких порядков. Так, коэффициент автокорреляции второго порядка характеризует тесноту связи между уровнями и и определяется по формуле:

(16)

где

Число периодов, по которым рассчитывается коэффициент автокорреляции, называют лагом. С увеличением лага число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается. Считается целесообразным для обеспечения статистической достоверности коэффициентов автокорреляции использовать правило – максимальный лаг должен быть не больше .

Свойства коэффициента автокорреляции.

Он строится по аналогии с линейным коэффициентом корреляции и таким образом характеризует тесноту только линейной связи текущего и предыдущего уровней ряда. Поэтому по коэффициенту автокорреляции можно судить о наличии линейной (или близкой к линейной) тенденции. Для некоторых временных рядов, имеющих сильную нелинейную тенденцию (например, параболу второго порядка или экспоненту), коэффициент автокорреляции уровней исходного ряда может приближаться к нулю.

По знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда. Большинство временных рядов экономических данных содержат положительную автокорреляцию уровней, однако при этом могут иметь убывающую тенденцию.[7]

Последовательность коэффициентов автокорреляции уровней первого, второго и т.д. порядков называют автокорреляционной функцией временного ряда. График зависимости ее значений от величины лага (порядка коэффициента автокорреляции) называется коррелограммой.

Анализ автокорреляционной функции и коррелограммы позволяет определить лаг, при котором автокорреляция наиболее высокая, а следовательно, и лаг, при котором связь между текущим и предыдущими уровнями ряда наиболее тесная, т.е. при помощи анализа автокорреляционной функции и коррелограммы можно выявить структуру ряда.

Если наиболее высоким оказался коэффициент автокорреляции первого порядка, исследуемый ряд содержит только тенденцию. Если наиболее высоким оказался коэффициент автокорреляции порядка , то ряд содержит циклические колебания с периодичностью в моментов времени. Если ни один из коэффициентов автокорреляции не является значимым, можно сделать одно из двух предположений относительно структуры этого ряда: либо ряд не содержит тенденции и циклических колебаний, либо ряд содержит сильную нелинейную тенденцию, для выявления которой нужно провести дополнительный анализ. Поэтому коэффициент автокорреляции уровней и автокорреляционную функцию целесообразно использовать для выявления во временном ряде наличия или отсутствия трендовой компоненты и циклической (сезонной) компоненты.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]