- •Нагревательные устройства цехов омд
- •1. Нагрев металла
- •Окисление металла
- •Обезуглероживание стали
- •Перегрев и пережог
- •Температурные напряжения
- •Равномерность нагрева
- •Общая характеристика методов расчета нагрева металла
- •Нагрев тел при краевых условиях третьего рода
- •2. Топливо и его горение
- •Классификация топлива
- •Химический состав топлива
- •Теплота сгорания топлива
- •Краткие сведения о топливе, применяемом в печах цехов омд
- •Общие положения теории горения
- •3. Общая классификация нагревательных печей и режимов их работы
- •Классификация и общая характеристика режимов работы печей
- •Теплотехнические характеристики работы печей
- •Теплообмен в пламенных печах
- •4. Огнеупорные материалы и металлы для строительства печей
- •4.1. Огнеупорные материалы
- •Физические свойства огнеупорных материалов
- •Рабочие свойства огнеупорных материалов
- •4.2. Теплоизоляционные материалы
- •4.3. Огнеупорные растворы и обмазки
- •4.4. Металлы, применяемые в печестроении
- •5. Устройства для сжигания топлива
- •5.1. Устройства для сжигания газа
- •5.1.1. Горелки, применяемые при равномерно-распределенном и прямом радиационных режимах работы печи Горелки с полным предварительным смешением (инжекционные горелки)
- •Горелки с внешним смешением (пламенные)
- •Горелки с частичным предварительным смешением
- •5.1.2. Горелки, применяемые при косвенном радиационном режиме работы печи
- •Горелки с предварительным смешением
- •Горелки с внешним смешением (плоскопламенные)
- •5.2. Устройства для сжигания жидкого топлива
- •Форсунки низкого давления
- •Форсунки высокого давления
- •5.3. Радиантные трубы
- •6. Устройства для утилизации тепла отходящих дымовых газов
- •Регенеративный и рекуперативный принципы утилизации тепла
- •Теплообмен в рекуператорах
- •Классификация рекуператоров
- •6.1. Металлические рекуператоры
- •6.1.1. Конвективные рекуператоры Трубчатые рекуператоры
- •Игольчатые рекуператоры
- •6.1.2. Радиационные и комбинированные рекуператоры
- •6.2. Керамические рекуператоры
- •7. Нагревательные и термические топливные печи
- •7.1. Нагревательные колодцы
- •7.1.1. Регенеративные колодцы
- •7.1.2. Рекуперативные колодцы Колодцы с отоплением из центра пода
- •Колодцы с отоплением двумя верхними горелками
- •Колодцы с отоплением одной верхней горелкой
- •7.2. Камерные печи
- •7.3. Печи для нагрева блюмов, слябов, заготовок
- •7.3.1. Толкательные методические печи
- •7.3.2. Печи с шагающим подом и с шагающими балками
- •7.3.3. Печи с роликовым подом
- •7.3.4. Печи с вращающимся подом
- •7.4. Секционные печи
- •7.5. Колпаковые печи
- •7.6. Протяжные печи для термической и термохимической обработки тонкой стальной ленты и жести
- •8. Электрические нагревательные и термические печи
- •8.1. Методы генерации тепла за счет электрической энергии
- •Теплогенерация в рабочем теле при приложении к нему разности потенциалов
- •Теплогенерация в рабочем теле, помещенном в переменное электромагнитное поле
- •8.2. Печи сопротивления
- •8.2.1. Электрические нагревательные колодцы
- •8.2.2. Колпаковые электрические печи
- •8.3. Индукционные нагревательные печи
- •1. Нагрев металла.......................................................................................................3
Общие положения теории горения
Горением называется процесс взаимодействия топлива с окислителем, сопровождающийся выделением тепла, а иногда и света. Роль окислителя в большинстве случаев выполняет кислород воздуха. Всякое горение предполагает, прежде всего, тесный контакт между молекулами топлива и окислителя. Чтобы происходило горение, необходимо обеспечить этот контакт, т. е. необходимо смешать топливо с воздухом. Следовательно, процесс горения складывается из двух стадий: смешение топлива с воздухом и воспламенение, и горение топлива.
Процесс воспламенения характеризует собой предварительный период, когда в результате медленного окисления в системе происходит накопление тепла с соответствующим постепенным повышением температуры. При достижении определенной температуры, называемой температурой воспламенения, реакции окисления резко ускоряются и процесс переходит непосредственно в горение.
Температура воспламенения зависит от природы топлива и характером теплообмена с окружающей средой.
Температуру воспламенения можно определить по уравнению:
К,
где
– энергия активации,
;
R
– газовая постоянная,
;
– температура среды, окружающей сосуд,
в котором происходит горение, К.
Кроме температуры, большое влияние на процесс воспламенения оказывает концентрация горючей составляющей в смеси. Существуют такие минимальная и максимальная концентрации горючей составляющей, ниже и выше которых воспламенение произойти не может. Такие предельные концентрации называются концентрационными пределами воспламенения.
Чтобы установить пределы воспламенения промышленных газов, являющихся смесью различных горючих компонентов используют правило Ле-Шателье:
,
где
Z
– искомый нижний или верхний предел
воспламенения;
,
,
– процентное содержание отдельных
горючих компонентов в топливе;
,
,
– соответствующие пределы воспламенения
для горючих компонентов топлива.
В процессе горения образуется пламя, в котором протекают реакция горения составляющих топлива и выделяется тепло. В технике при сжигании газообразного, жидкого и твердого пылевидного топлив применяют факельный метод сжигания. Факел – это частный случай пламени, когда топливо и воздух поступают в рабочее пространство печи в виде струй, которые постепенно перемешиваются друг с другом. Поэтому форма и длина факела обычно определенные.
На практике при создании устройств для сжигания топлива (горелок, форсунок) применяют различные конструктивные приемы (направляют струи под углом друг к другу, создают закручивание струй и др.) с тем, чтобы организовать смешение так, как это необходимо для конкретного случая сжигания топлива.
Различают гомогенное и гетерогенное горения.
При гомогенном горении тепло- и массообмен происходят между телами, находящимися в одинаковом агрегатном состоянии. Гомогенное горение протекает в объеме топлива и свойственно газообразному топливу.
При гетерогенном горении тепло- и массообмен происходят между телами, находящимися в разных агрегатных состояниях (в состоянии обмена находятся газ и поверхность частиц топлива). Такое горение свойственно жидкому и твердому топливам.
Гомогенное горение может протекать в кинетической и диффузионной областях.
При кинетическом горении полное перемешивание топлива с воздухом осуществляют предварительно и в зону горения подают заранее подготовленную топливо-воздушную смесь. В этом случае основную роль играют химические процессы, связанные с протеканием реакций окисления топлива.
При диффузионном гомогенном горении процессы смешения и горения не разделены и совершаются практически одновременно. В этом случае процесс горения определяется перемешиванием, так как время смешения больше времени, необходимого для протекания химической реакции.
При
горении газа и углерода полученные на
основе химических реакций количества
кислорода и воздуха представляют собой
те наименьшие количества, которые
необходимы для полного окисления единицы
горючего вещества. Такое наименьшее
необходимое количество воздуха
(кислорода) называют теоретическим.
На практике, однако, для полного сжигания
требуется подавать количество
воздуха, несколько превышающее
теоретическое. Величину n
отношения действительного расхода
воздуха
к теоретическому
называют коэффициентом расхода
воздуха. Работать при коэффициенте
расхода воздуха, большем единицы,
приходится для достижения полного
сгорания топлива.
Изменение коэффициента расхода (избытка) воздуха влечет за собой изменение количества воздуха, подаваемого для горения.
Всякое топливо представляет собой смесь горючих и негорючих элементов, поэтому общий расход воздуха (кислорода) определяют суммированием расходов дутья, потребных для сжигания каждого из горючих элементов топлива.
При горении топлива развивается определенная температура горения. Под температурой горения понимают ту температуру, которую приобретают продукты сгорания в результате сообщения им тепла, выделенного при сжигании. Различают теоретическую и калориметрическую температуры горения.
Теоретическую температуру горения определяют с учетом процессов диссоциации, протекающих при образовании продуктов сгорания:
К,
где
– тепло, израсходованное на процессы
диссоциации,
или
;
– объем продуктов сгорания, образующихся
при сгорании единицы топлива,
или
;
c
– объемная
теплоемкость продуктов сгорания,
.
Калориметрическую
температуру
определяют
из условия полного сгорания топлива и
использования всего выделившегося
при горении тепла только на повышение
температуры продуктов сгорания при
адиабатных условиях (отсутствие
теплообмена с внешней средой) и
.
Следовательно,
К.
При подогретом воздухе (или топливе) калориметрическую температуру определяют по выражению:
К,
где
– физическое
тепло подогретых воздуха и топлива,
,
.
Калориметрическая температура горения служит одной из характеристик топлива.
