
- •Глава 6 техника и технология удаления газообразных вредных веществ из примесей
- •6.1. Абсорбционная очистка газов
- •Адсорбенты, применяемые для очистки газов
- •6.2. Адсорбционная очистка газов
- •Характеристика и область применения активных углей
- •Характеристика некоторых марок силикагелей
- •Характеристики некоторых промышленных цеолитов
- •6.3. Каталитическая очистка газов
- •Температура зажигания катализаторов при каталитическом окислении
- •6.4. Термическое обезвреживание газов
- •Глава 7 интенсификация процессов газоочистки
- •Глава 8 технологии очистки радиоактивных газов и аэрозолей
- •Биологически значимые радионуклиды благородных газов и йода, образующиеся при работе ядерного реактора
- •Расчетное количество q в трития, образующегося в энергетическом реакторе
- •Эффективность различных систем обработки газообразных отходов для благородных газов на pwr электрической мощностью 1000 мВт
- •Эффективность различных систем обработки газообразных отходов для благородных газов на bwr электрической мощностью 1000 мВт.
- •Состав радиоактивных благоприятных газов (рбг) и йода в газообразных выбросах аэс
- •Нормированный выброс радиоактивных газов «аэрогенной» в атмосферу аэс, Ки / [Мвт(эл.)год]
- •Глава 9 вспомогательное оборудование систем очистки выбросов
- •Металлические материалы и сплавы. В пылегазоочистном оборудовании применяются следующие металлические материалы.
- •Органические материалы. Это следующие неметаллические материалы органического происхождения.
- •Сравнительная характеристика трубопроводов
- •Классификация лакокрасочных покрытий, стойких в особых средах
- •Глава 10 проектирование технологических процессов очистки промышленных выбросов
- •Сравнительные характеристики различных пылеуловителей
- •Глава 11 правовые основы защиты атмосферы
- •Глава 12 техническая эксплуатация газоочистных установок
- •Время обслуживания условной единицы газоочистного оборудования смену
- •Журнал учета Выполнения мероприятий по охране воздушного бассейна
- •Предельно-допустимые концентрации (пдк) загрязняющих веществ в воздухе
6.4. Термическое обезвреживание газов
Если загрязняющие вещества легко окисляются, как, например, пары углеводородов в отходящих газах цехов растворителей или красок, то их удаление может быть осуществлено путем сжигания газов, причем образуются диоксид углерода и вода при сжигании углеводородов, или диоксид серы и вода — в случае органических сульфидов.
Преимущества метода:
— отсутствие шламового хозяйства;
— высокая эффективность;
— простота обслуживания;
— возможность полной автоматизации;
— относительно низкая стоимость очистки.
Недостатки:
— при сжигании могут образовываться продукты реакции, во много раз превышающие по токсичности исходный газовый выброс (это касается галогенов, фосфора и серы);
— необходимость учитывать, что смесь горючих веществ с кислородом образуют взрывоопасные смеси (концентрация горючих веществ в смеси должна составлять не более 25% от нижнего предела взрываемости);
— необходимо учитывать наличие в выбросах смолы и горючих пылей, которые при транспортировке могут откладываться в местах резкого изменения направления движения, что приводит к их воспламенению при аварийной ситуации.
К оборудованию термического обезвреживания выбросов предъявляют следующие требования:
Рис.
6.15. Печь
для обезвреживания фенолсодержащих
веществ:
1
— горелка; 2
— топка; 3
— взрывной клапан; 4
— поворотный клапан; 5
— сотовые перегородки; 6
— дымовая труба; 7
— газоход; 8
— камера смешения; 9
— окно; 10
— перегородка
— бездымность сгорания;
— стабильность технологического процесса горения при изменении расхода и состава сбрасываемых газов; взрывобезопасность; шумность и яркость должна быть в пределах санитарных норм.
В зависимости от условий сжигания и технологического оформления процесса применяют два метода термического обезвреживания: в факельных устройствах и в печах (топках) различной конструкции.
Сжигание в печах (в замкнутом пространстве) используют если содержание сжигаемых примесей в газах недостаточно (малая теплотворная способность газового потока). При этом приходится либо добавлять топливо, либо, предварительно нагревать газовый поток до температуры сгорания.
Аппараты термического обезвреживания в топках подразделяются на следующие группы: камерные печи; печи с использованием циклонного принципа смешения газов; печи со струйным смешением газов; системы обезвреживания выбросов в технологических топках; регенеративные установки термического обезвреживания выбросов; комбинированные установки обезвреживания выбросов.
Камерные печи (рис. 6.15) обычно подразделены на две камеры: камеру горения и камеру смешения, которая переходит в дымоход. Несмотря на значительное время пребывания газов в печи (до 3,5 с), обусловленное ее большими габаритами, и довольно высокую температуру (более 850 градусов) в печи не достигается необходимая степень обезвреживания.
Процесс термического обезвреживания кислородсодержащих выбросов в ряде случаев целесообразно проводить в топках котельных и других технологических агрегатах путем подачи выброса в качестве окислителя. При этом выбросы могут подаваться непосредственно в горелки котла или зону горения. Недостающее количество воздуха, необходимое для полного горения топлива, добавляют к выбросу до его подачи в технологический агрегат. При этом может происходить ускоренная коррозия и некоторое снижение КПД котлов. Однако, последнее может компенсироваться дополнительным теплом от сжигания СО. К технологическим агрегатам, где возможно это использовать относятся котлы ТЭЦ.
Наиболее экономичными и перспективными для термического обезвреживания газов являются печи с использованием регенеративных теплообменников. Такие печи состоят из камеры горения и двух или нескольких слоев регенеративной насадки 4. За счет реверсивного движения обезвреживаемых газов через аппарат (клапан 1, патрубки 2 и 3) слои насадки обеспечивают утилизацию тепла с помощью насадки, которая, нагреваясь продуктами горения, отдает аккумулированное тепло обезвреживаемому газу (рис. 6.16).
При сжигании на факельных установках используется газообразное или жидкое топливо. При этом необходим избыток кислорода на 10–15% больше стехиометрического количества. Обычно на факельных установках сжигают попутные газы, метан, пропан и других углеводороды. Оборудование для сжигания в этом случае включает горелку, установленную на стальной трубе, по которой идет газ. Чтобы пламя факела было некоптящим (при сжигании углеводородов с низким соотношением углерод — водород), добавляют воду в виде пара. При этом происходит реакция водяного пара с углеводородами с образованием водорода и СО.
В зависимости от характера сжигания факельные установки подразделяют на три типа: факелы, в которых сжигаемый газ и воздух предварительно смешиваются вне зоны горения; факелы, в которых кислород соединяется с сжигаемым газом в момент горения; комбинированные факелы, в которых часть кислорода предварительно смешивается с горючим газом, а недостающий кислород поступает из окружающей среды.
Рис.
6.16.
Устройство
для технического дожигания отбросных
газов с вертикально расположенными
насадками: 1
— клапаны; 2,
3
— патрубки; 4
— насадка; 5
— камера; 6
— теплоизолированный корпус; 7
— перегородки; 8
— смесительные каналы; 9
— горелки; 10
— окна
В зависимости от давления установки подразделяют на установки низкого (до 0,2 мПа) и высокого (выше 0,2 мПа) давления.
По периодичности работы они могут быть периодического и постоянного действия, а по месту расположения — отдельно стоящие и размещенные на технических установках.
В зависимости от состава газов, поступающих на сжигание, установки подразделяют на сухие и мокрые. Мокрые предназначены для сжигания газов, содержащих водяные пары и тяжелые углеводороды, а сухая — для сжигания сухих паров углеводородов с молекулярной массой менее 45 при температуре 0.
Рис.
6.17.
Устройство
факельной установки: 1
— сепаратор; 2
— факельная труба; 3
— дежурные горелки; 4
— запальные горелки; 5
— гидрозатвор
Рис.6.18.
Факельная
горелка с соплом Вентури: 1
— электрозапал; 2
— трубопровод топливного газа; 3
— дежурная горелка; 4
— трубка из пиролана; 5
— запальная свеча; 6
— футеровка; 7
— кольцо из жаропрочной стали; 8
— колосниковая решетка для стабилизации
пламени; 9
— решетка огнеоградителя
Расчеты показывают, что для увлечения достаточного количества воздуха скорость газового потока должна приближаться к сверхзвуковой. Поэтому на практике обычно вокруг форсунок для впрыска газа располагают сопла для подачи пара с высокой скоростью, что приводит к большому шуму факела и является одним из главных недостатков этого способа сжигания.