
- •Глава 5 техника и технология удаления взвешенных веществ из атмосферных выбросов
- •Классификация пылеуловителей по дисперсности очищаемой пыли
- •5.1. Основные характеристики пылеуловителей
- •5.2. Сухие механические пылеуловители
- •Параметры выбора максимальной скорости газов в пылеосадительных камерах
- •Фракционные коэффициенты очистки жалюзийного пылеуловителя вти
- •Влияние степени отсоса на коэффициент очистки для жалюзийных пылеуловителей
- •Относительные размеры цилиндрических циклонов в долях диаметра корпуса
- •Относительные размеры конических циклонов в долях диаметра корпуса
- •Соотношение размеров для циклонов вцнииот
- •Размеры, мм, циклона конструкции сиот
- •Размеры циклонов конструкции цкти типа ц
- •Параметры, определяющие эффективность работы циклонов конструкции нииоГаза
- •Значения коэффициентов сопротивления одиночного циклона
- •Поправочный коэффициент к1 на диаметр циклона
- •Поправочный коэффициент к2 на запыленность газов
- •Коэффициент к3 , учитывающий дополнительные потери давления, связанные с групповой компоновкой
- •Значение коэффициента 0
- •Параметры, определяющие эффективность батарейных циклонов
- •Технические характеристики батарейных циклонов
- •5.3. Фильтры
- •Классификация воздушных фильтров
- •Сравнительная характеристика туманоуловителей
- •Основные свойства фильтровальных тканей
- •Влияние слоя осажденной пыли на эффективность улавливания тканью частиц диаметром 0,3 мкм
- •Рекомендуемые скорости фильтрации в рукавных фильтрах
- •Рекомендуемые значения удельной газовой нагрузки для различных тканей
- •Нитрон рукава нцм 0,83
- •Размеры и форма фильтрующих керамических элементов
- •5.4. Мокрые пылеуловители
- •Характеристика насадок
- •Формулы для расчета коэффициента ж
- •5.5. Электрофильтры
- •Основные типы электрофильтров. Наибольшее распространение в промышленности нашли следующие электрофильтры:
- •5.6. Подготовка выбросов перед очисткой в пылеулавливающих устройствах
5.2. Сухие механические пылеуловители
К сухим механическим пылеуловителям относятся аппараты, использующие различные механизмы осаждения: гравитационный (пылеосадительные камеры), инерционный (инерционные пылеуловители) и центробежный (одиночные, групповые и батарейные циклоны, вихревые и динамические пылеуловители).
Пылеосадительные камеры. Пылеосадительные камеры являются простейшими пылеулавливающими устройствами, применяемыми для предварительной очистки газов. Принцип работы пылеосадительной камеры основан на использовании действующей, на частицы пыли силы тяжести. Приемлемая эффективность достигается при длительном нахождении частиц в пылеосадительной камере. Поэтому пылеосадительные камеры, рассчитанные на осаждение даже относительно крупных частиц, весьма громоздки. Материалом для их постройки являются кирпич или сборный железобетон, реже сталь или дерево.
Рис.
5.4. Горизонтальные пылеосадительные
камеры:
а
— простейшая; б
— многополочная; в
— с перегородками; г
— с цепными или проволочными завесами
Рис.
5.5. Вертикальная пылеосадительная
камера: а
— без отвода пыли; б
и в
— с отводом пыли: 1
— газоходы; 2
— отражательный диск; 3
— огнеупорное покрытие; 4
— отражательные конусы; 5
— наклонная плита
В горизонтальных пылеосадительных камерах для повышения их эффективности устраивают цепные или проволочные завесы и отклоняющие перегородки. Это позволяет дополнительно к гравитационному использовать эффект инерционного осаждения частиц при обтекании потоком газов различных препятствий. Эффективность работы в значительной мере зависит от того, насколько равномерна раздача потока. Для этой цели камеры оборудуют газораспределительными решетками.
В вертикальных осадительных камерах осаждаются частицы, скорость осаждения которых выше скорости газового потока. Диаметр осадительной камеры обычно в 2,5 раза больше диаметра дымовой трубы, и соответственно скорости газов в камере в 6,25 раз меньше, чем в трубе. Такое соотношение размеров трубы и осадительного устройства позволяет при скорости газов в дымовой трубе 1,5–2,0 м/c осаждать частицы размером 200–400 мкм.
Расчет пылеосадительных камер. Приближенный расчет пылевых камер сводится к определению площади осаждения, т. е. площади дна камеры или полок по заданному размеру частиц пыли, подлежащих улавливанию. При расчетах принимаются следующие допущения: распределение концентрации и дисперсности пыли по сечению аппарата равномерное, форма частиц пыли сферическая, сила сопротивления среды движению частиц подчиняется закону Стокса, скорость газа по сечению камеры равномерная, нет вторичного уноса пыли из камеры, влияние турбулентности потока на частицы отсутствует.
При ламинарном движении запыленного газа под влиянием силы тяжести пылинки оседают на дно пылевых камер со скоростью витания vс. Газ движется в камере со скоростью:
, (5.11)
где Qг — объемный расход газов, м3/с; В — ширина камеры, м; Н — высота камеры (высота падения пылинки, м.
, (5.12)
где L — ширина камеры, м
Подставляя (5.11) в уравнение (5.12) получим
. (5.13)
Подставляя в уравнение (5.13) формулу для определения скорости витания (4.6) получим минимальный размер частиц пыли dmin, м, которые могут быть полностью осаждены в камере.
. (5.14)