
- •1. Гідромеханічні процеси
- •2.Газоочищеня
- •3.Фільтрування
- •4. Перемішування
- •5.Псевдозрідження
- •6.Масообмін через напівпроникні перетинки (мембрани)
- •7.Основи масопереносу
- •8.Абсорбція
- •9.Перегонка рідин
- •10. Екстракція
- •11. Механічні процеси
- •1 Основи гідрокінетики
- •1.1 Загальні відомості
- •1.2 Класифікація рідких неоднорідних систем та гідромеханічних процесів.
- •1.3. Методи очищення неоднорідних систем
- •1.4 Матеріальний баланс гідромеханічних процесів
- •2 Газоочищення
- •2.1 Диференційне рівняння осадження частинок під дією сили тяжіння
- •2.2 Розв'язок диференційного рівняння з метою визначення швидкості осадження
- •2.3 Визначеннч швидкості осадження частинок пі дією сили тяжіння
- •2.4 Гравітаційне осадження . Визначення продуктивності газового відстійника
- •2.5 Розділення сумішей в полі відцентрових сил.
- •2.6 Циклонний процес.
- •Розрахунок циклонів
- •2.7 Осадження під дією електричного поля
- •3.Фільтрування Вступ
- •3.1 Кінетика фільтрування
- •3.2 Рівняння Нав'є-Стокса .
- •3.3Отримання чисел подібності з диференційного рівняння для рівномірного сталого руху рідини ,що не стискується
- •3.4 Знаходження швидкості осадження на основі рівняння подібності
- •3.5 Основного кінетичне рівняння фільтрації
- •3.6 Основне рівняння фільтрації
- •3.8 Режим постійної швидкості
- •3.9 Промивка осаду
- •4 Центрифугування
- •4.1 Класифікація центрифуг
- •4.2 Величина відцентрової сили
- •4.3 Фактор розділення в центрифугах
- •4.4 Розрахунок відстойної центрифуги
- •4.5 Розрахунок фільтруючих центрифуг
- •5. Перемішування
- •5.1 Перемішування в рідкій фазі
- •5.2 Отримання модифікованого критерія Ейлера та Рейнольдса
- •5.3 Робоча потужність
- •5.4 Потужність в пусковий період
- •5.5 Методика розрахунку потужності перемішувача
- •6 Псевдозріження твердого зернистого матеріалу
- •6.1 Використання процесів псевдозрідження
- •6.2 Гідродинамічна суть процесу псевдозрідження
- •6.3 Визначення еквівалентного діаметра каналу в зернистому шарі. Гідравлічний опір зернистого шару
- •6.4 Визначення швидкості початку псевдозрідження
- •7. Масообмін через напівпроникні перетинки (мембрани)
- •7.1. Найважливіші мембранні методи та межі їх застосування.
- •7.2 Функціональні характеристики мембран.
- •7.3 Кінетика процесів мембранного розділення сумішей.
- •8. Основи масопереносу
- •8.1 Загальні відомості про масообмінні процеси
- •8.2. Основне рівняння масопередачі
- •8.3 Рівняння лінії рівноваги
- •8.4 Матеріальний баланс масообмінних процесів
- •8.5 Рушійна сила масообмінних процесів
- •8.6 Модифіковане рівняння масопередачі
- •8.7 Визначення числа одиниць переносу
- •8.8 Основні закони масопередачі
- •8.9 Закон молекулярної дифузії (перший закон Фіна)
- •8.10 Диференційне рівняння молекулярної дифузії ( другий закон Фіка)
- •8.11 Закон масовіддачі ( закон Щукарева)
- •8.12 Диференційне рівняння масовіддачі ( конвективної дифузії)
- •8.13 Рівняння подібності конвективної дифузії.
- •8.14 Турбулентна дифузія
- •8.15 Вираження коефіцієнту масопередачі через коефіцієнти масовіддачі
- •8.16 Основи розрахунку масообмінних апаратів
- •8.16.2 Розрахунок висоти апаратів
- •9.1 Рівновага в процесах абсорбції
- •9.2 Кінетика процесу абсорбції
- •9.3 Матеріальний баланс і витрата абсорбенту
- •9.4 Тепловий баланс і температура абсорбенту
- •9.5 Принципіальні схеми абсорбції
- •10 Перегонка рідин
- •10.1 Характеристики двофазних систем рідина - пар
- •10.2 Ректифікація
- •10.2.1 Принцип ректифікації
- •10.2.2 Аналіз роботи ректифікаційних колон
- •10.2.3 Матеріальний баланс ректифікаційних колон
- •10.2.4 Рівняння робочих ліній
- •10.2.5 Побудова робочих ліній в діаграмі у-х
- •10.2.6 Тепловий баланс ректифікації
- •11 Екстракція
- •11.1 Рівновага в процесах екстракції
- •11.2 Представлення екстракції в діаграма х-у
- •11.3 Трикутна діаграма
- •11.4 Зображення процесів розведення на трикутній діаграмі
- •11.5 Процеси змішування в трикутній діаграмі, правило важіля
- •11.6 Крива рівноваги на трикутній діаграмі
- •11.7 3Находження хорд рівноваги і критичної точки
- •11.8 Види трикутних діаграм
- •11.9 Вплив температури на рівновагу
- •11.10 Матеріальний баланс екстракції
- •11.11 Кінетика екстракції
- •11.12 Принципові схеми екстракції
5.5 Методика розрахунку потужності перемішувача
1. Вибрати діаметр в залежності від параметрів рідкої та твердої фаз;
2. Вибрати діаметр апарата та перемішувача в залежності від продуктивності виробництва;
3. Розрахувати або вибрати число обертів перемішувача;
4. В залежності від критерія Rе і типу перемішування вибрати графік, з якого знаходимо
ЕиM.
Робоча
потужність:
(5.5.1)
Пускова
потужність:
(5.5.2)
f1 -в раховує невідповідність реальної мішалки від нормалізованої;
(5.5.3)
х,y - вибераються з таблиць;
Ho,,Do-нормалізовані розміри ,
f2- враховує шорсткість стінки;
f3 - враховує наявність в апараті допоміжних тіл (гільза термометра, змійовик і т.і.)
Потужність
двигуна:
(5.5.4)
де f-коефіцієнт запасу (1,2)
-к.к.дпередачі потужності від двигуна до валу (0,9)
6 Псевдозріження твердого зернистого матеріалу
Вступ
Псевдозрідження - це процес взаємодії газів і рідин з твердими зернистими пилевидними матеріалами, при проведені якого тверді частинки набувають рухливості одна відносно одної за рахунок обміну енергії з псевдозріджуючим потоком. Такий стан твердих частинок отримало назву "псевдозріджений шар" внаслідок зовнішньої подібності з поведінкою звичайної краплинної рідини:
-псевдозріджуючий шар приймає форму вміщуючого його апарату - поверхня псевдозріджуючого шару горизонтальна.
- аналогічні властивості рідини - текучість, в'язкість і поверхневий натяг. Тіла, що мають меншу густину, ніж псевдозріджуючий шар, спливають в ньому, а більшу - тонуть.
Широке запровадження техніки псевдозрідження в промислову практику зумовлено рядом позитивних факторів. Тверді частинки в псевдозріджуючому стані внаслідок текучості можна переміщувати по трубам, що дозволяє багато періодичних процесів здійснювати безперервно. Особливо вигідне використання псевдозріджуючого шару для процесів, швидкість котрих визначається термічним або дифузійним опорами в газовій фазі. Ці опори в умовах псевдозрідження зменшуються в десятки, а інколи в сотні разів, а швидкість процесів відповідно зростає.
Завдяки інтенсивному перемішуванню твердих частинок в псевдозріджуючому шарі практично вирівнюється поле температур, вилучається можливість значних локальних перегрівів і зв'язаних з цим порушень в проходженні ряду технологічних процесів.
Але поряд з перевагами, псевдозріджуючому шару властиві і деякі недоліки. Так викликане інтенсивним перемішуванням твердих частинок вирівнювання температур і концентрацій в слою призводить до зменшення рушійної сили процесу. Можливість проскоку значних кількостей газів без достатнього контакту з твердими частинками зменшується вихід цільового продукту. До від'ємних факторів також відносять ізнос твердих частинок, ерозію апаратури, виникнення значних зарядів статичної електрики, необхідність встановлення потужних газоочисних споруд. Деякі з перечислених недоліків можуть бути вилучені раціональною конструкцією апаратів.