Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЧМ ЛЕКЦИИ для РИО.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.1 Mб
Скачать

1. Шесть факторов на двух уровнях каждый;

2. Три фактора на четырех уровнях каждый.

Реальные объекты могут обладать огромной сложностью. Так, система с 5 уровнями для 5 факторов имеет 3125 состояний, а для 4 факторов на 10 уровнях число состояний определяется значением 1048576. В этих условиях экспериментатор вынужден отказаться от таких экспериментов, которые включают все возможные опыты – слишком велик перебор. И здесь возникает вопрос, сколько и каких опытов необходимо провести, чтобы корректно решить поставленную задачу? В этом случае и приходит на помощь математическое планирование эксперимента.

Однако при этом следует иметь в виду, что при планировании эксперимента совсем не безразлично, какими свойствами обладает объект исследования. Отметим два основных свойства, с которыми следует обязательно считаться.

1. Степень воспроизводимости результатов (воспроизводимость).

Если объект в одном состоянии наблюдать в различные моменты времени, то разброс значений параметра оптимизации при этом не должен превышать некоторого заранее заданного значения (требования экспериментатора к точности проведения опыта). Далее в курсе мы будем рассматривать только воспроизводимые объекты.

2. Управляемость объекта.

Планирование эксперимента предполагает активное вмешательство в изучаемый процесс и возможность выбора в каждом опыте тех уровней факторов, которые представлены в эксперименте. Такой эксперимент называется активным. Объект, на котором возможен активный эксперимент, называется управляемым. Иными словами, управляемым называется такой объект, который экспериментатор по своему желанию может перевести в любое из возможных состояний и поддерживать в этом состоянии с заданной точностью заданное время.

На практике технические объекты чаще являются частично управляемыми. В курсе мы будем рассматривать в качестве объектов исследования ВОСПРОИЗВОДИМЫЕ УПРАВЛЯЕМЫЕ СТАТИЧЕСКИЕ ОБЪЕКЫ.

При решении задач мы будем использовать МАТЕМАТИЧЕСКИЕ МОДЕЛИ объекта исследования

Под математической моделью понимается уравнение, связывающее параметр оптимизации с факторами: Y=f(x1, x2,…, xn).

Такая функция называется функцией отклика. Проверка пригодности модели осуществляется статистическими методами. Проверка гипотезы о пригодности модели называется проверкой адекватности, а пригодная модель – адекватной моделью.

Задача построения и использования математической модели объекта с помощью планирования эксперимента решается по следующему алгоритму:

1.предварительное изучение объекта с целью сбора априорной информации о нем;

2. построение модели, проверка ее пригодности;

3. интерпретация модели;

4. использования адекватной модели на практике.

Предварительное изучение объекта включает в себя:

  • выбор параметров оптимизации,

  • выбор модели объекта;

  • выбор плана эксперимента.

2.2. Параметр оптимизации

2.2.1. Виды параметров оптимизации

Первое, с чего следует начинать любое исследование – четкая формулировка его целей. Количественной характеристикой цели является параметр оптимизации. Следует сразу же оговорить то обстоятельство, что оптимизировать процесс можно лишь по одному параметру. Остальные параметры при этом могут выступать только как ограничения на решение поставленной задачи.

В зависимости от объекта и цели исследования параметры оптимизации могут быть весьма разнообразны: экономические, технико-экономические, механические, физические и т.п.

2.2.2. Требования к параметрам оптимизации

Параметр оптимизации – признак, по которому мы хотим оптимизировать процесс. Он должен иметь количественную оценку (то есть задаваться числом). Экспериментатор должен уметь измерять параметр оптимизации при любой комбинации факторов. Множество значений, которые может принимать параметр оптимизации, называется областью его определения.

Область определения параметра оптимизации может быть дискретна или непрерывна, ограничена или нет. Если нет способа количественного измерения результата, то пользуются приемом, называемым РАНЖИРОВАНИЕМ. В этом случае параметру оптимизации присваиваются оценки – ранги по заранее выбранной шкале.

РАНГ – количественная оценка параметра оптимизации, носящая субъективный характер.

Для каждого физически измеряемого параметра оптимизации можно построить его ранговый аналог, но предпочтение следует отдавать измерению, как более точному способу оценки.

Параметр оптимизации должен выражаться одним числом.

Параметр оптимизации должен быть однозначен в статистическом смысле: заданному набору значений факторов должно соответствовать одно с точностью до ошибки эксперимента значение параметра оптимизации (обратно необязательно).

Параметр оптимизации должен быть эффективным с точки зрения достижения поставленной цели.

Параметр оптимизации должен быть эффективным в статистическом смысле, то есть выбранный параметр оптимизации должен определяться с максимально возможной точностью.

Допустим, следует провести оптимизацию состава сырьевой смеси при производстве силикатного кирпича с целью получения максимальной прочности изделий после автоклавной обработки. Итак, параметр оптимизации сформулированной задачи – прочность силикатного кирпича. Для оценки прочности кирпича можно использовать разрушающие (мера прочности – разрушающая нагрузка при испытании кирпича) методы испытания и неразрушающие (мера прочности, например, скорость прохождения ультразвуковой волны через материал) методы. С точки зрения эффективности достижения поставленной цели обе меры эквивалентны, а вот с точки зрения эффективности в статистическом смысле точность измерения предела прочности кирпича разрушающими методами существенно выше.

Параметр оптимизации должен быть универсальным и полным, то есть всесторонне характеризовать объект исследования. С этой точки зрения, например, технологические параметры оптимизации недостаточно универсальны, они не учитывают экономику производства.

Желательно, чтобы параметр оптимизации имел физический смысл, был простым и легко вычисляемым.

В заключение следует отметить, что при выборе параметра оптимизации нужно также иметь в виду и то обстоятельство, что параметр оптимизации может оказывать влияние и на вид математической модели. Например, экономические параметры в силу их аддитивности легко представляются линейными функциями, тогда как физико-химические показатели требуют зачастую для описания сложного математического аппарата.