
- •С.П. Горбунов применение эвм в решении рецептурно-технологических задач
- •Введение
- •Экспериментальных данных
- •1.1. Ошибки эксперимента
- •1.2. Типы ошибок измерений
- •1.3. Распределение случайных ошибок измерения
- •1.4. Оценка истинного значения измеряемой случайной
- •1.5. Определение грубых ошибок
- •1.6. Доверительный интервал оценки измеряемой случайной величины
- •1.7. Сравнение средних значений
- •1.8. Определение необходимого числа повторов опыта
- •2. Математическое планирование эксперимента
- •2.1. Основные понятия и определения
- •1. Шесть факторов на двух уровнях каждый;
- •2. Три фактора на четырех уровнях каждый.
- •2.2. Параметр оптимизации
- •2.3. Факторы
- •2.4. Выбор математической модели
- •Выбор математической модели
- •2.6. Полный факторный эксперимент
- •2.7. Выбор области факторного пространства
- •2.8. Выбор основного (нулевого) уровня
- •2.9. Выбор интервалов варьирования факторами
- •2.10. Кодирование факторов
- •2.11. Составление план – матрицы эксперимента
- •2.12. Рандомизация опытов
- •2.13. Реализация эксперимента
- •2.14. Проверка воспроизводимости опытов план – матрицы
- •2.15. Расчет коэффициентов полного факторного эксперимента. Эффекты взаимодействия. Смешанные оценки
- •2.16. Оценка значимости коэффициентов регрессии
- •2.17. Проверка адекватности математической модели
- •2.18. Построение математических моделей планов 2-го и выше порядков
- •3.1. Постановка задач линейного программирования
- •3.2. Графические решения двумерных задач
- •3.3. Стандартная форма задач линейного программирования
- •3.4. Основные результаты линейного программирования
- •3.5. Симплекс – метод при заданном допустимом базисном решении
- •3.6. Обобщение результатов линейного программирования
- •3.7. Транспортная задача
- •Приложения
2.12. Рандомизация опытов
На изучаемый процесс кроме варьируемых факторов оказывают влияние и другие, зачастую неизвестные исследователю. Для того, чтобы внести элемент случайности влияния этих факторов на результаты опыта, устанавливается случайный порядок постановки опытов во времени. Эта процедура и называется рандомизацией. Для ее осуществление можно использовать таблицы случайных чисел, лотерею и т.п.
2.13. Реализация эксперимента
Реализация плана предполагает проведение опытов в соответствии с условиями план – матрицы при обеспечении заданных систем ограничений эксперимента во времени и пространств.
Разберем дальнейшие расчеты на конкретном примере.
Упражнение № 5 Построить на данных табл. 6 математическую модель процесса влияния добавок CaCl2 (X1) и С – 3 (X2) на прочность равноподвижных бетонных смесей через 28 суток нормального твердения.
Таблица 6
№ |
X0 |
X1 |
X2 |
X1X2 |
Единичные значения прочности, МПа |
Среднее значение прочнос-ти, МПа
|
S2yi, МПа |
Расчетные значения прочности, МПа |
1 |
+1 |
–1 |
–1 |
+1 |
10, 8 ,9 |
9 |
1 |
7,25 |
2 |
+1 |
+1 |
–1 |
–1 |
33, 27, 30 |
30 |
9 |
31,75 |
3 |
+1 |
–1 |
+1 |
–1 |
14, 18, 16 |
16 |
4 |
17,75 |
4 |
+1 |
+1 |
+1 |
+1 |
40, 48, 44 |
44 |
16 |
42,25 |
2.14. Проверка воспроизводимости опытов план – матрицы
При одинаковом числе параллельных результатов опыта на каждом сочетании уровней факторов воспроизводимость процесса проверяется по расчетному значению критерия Кохрена, при несовпадении – по критерию Фишера.
Процесс считается воспроизводимым, если соответствующие расчетные значения критериев не превышают табличных значений. Если это не выполняется, необходимо принять меры к уточнению измерений в опыте с максимальной дисперсией.
В рассматриваемом нами примере построчные дисперсии приведены в табл. 6.
Критерий Кохрена Gрасч=16/30=0,533. Табличное значение критерия Кохрена (прил. Г) G(0.05,2,4)=0,7679. Так как выполняется неравенство Gрасч <G, следовательно воспроизводимость опытов в строках матрицы удовлетворительная.
Для план – матрицы лучшей оценкой дисперсии будет средняя арифметическая дисперсий по строкам плана, называемая дисперсия воспроизводимости S2{y} (ошибкой опыта).
Величина дисперсии воспроизводимости в рассматриваемом примере S2{y}=30/4=7,5.
В случае воспроизводимого процесса рассчитываются коэффициенты регрессии.
2.15. Расчет коэффициентов полного факторного эксперимента. Эффекты взаимодействия. Смешанные оценки
Целью реализации план - матриц как в задачах оптимизации, так и в задачах интерполяции – получение математических моделей, то есть определение неизвестных коэффициентов полинома. Для линейной модели полином выглядит как Y= b0+b1X1 + b2X2. Рассматривая математические модели как объект исследования, следует помнить, что как и для других физических величин, для моделей существуют понятия истинного значения коэффициентов и экспериментальной оценки этого значения. Планируя и реализуя эксперимент, мы пытаемся провести проверку адекватности математической модели.
Эксперимент, имеющий конечное число опытов, позволяет получить выборочные оценки коэффициентов уравнения: b0, b1, b2 и т.д. Их точность и надежность зависят от свойств выборки и определяются известными статистическими методами.
Для расчета коэффициентов полного факторного эксперимента следует пользоваться формулой
;
j=1…k.
(22)
n
Подсчет оценок коэффициентов ПФЭ типа 22 по формуле (22) дает следующие результаты
Аналогичным образом расчет b2 дает значение 5,25.
Благодаря
кодированию факторов расчет коэффициентов
полностью формализован. Если уравнение
Y=b0+b1X1+b2X2
справедливо, то оно справедливо и для
средних значений переменных факторов
=b0+b1
++b2
,
а так как в силу симметрии
=
=0, то b0=
,
то есть мы определяем значение свободного
члена полинома. Чтобы привести оценку
свободного члена в соответствие с общей
формулой расчета (22) коэффициентов
модели поступают следующим образом: в
матрицу планирования помещают
дополнительный вектор-столбец фиктивной
переменной X0,
которая для всех опытов принимает
значение [+1]. Тогда b0=24,5.
Свободный член уравнения является оценкой параметра оптимизации в центральной точке плана. Но такой же столбец X0 надо было бы использовать и при расчете оценки квадратичных эффектов X21, X22. Следовательно, по результатам реализации ПФЭ оценка свободного члена является смешанной с суммарной оценкой квадратичных эффектов всех факторов. Если квадратичные эффекты будут значимы, прогнозируемый результат опыта в центральной точке эксперимента будет существенно отличаться от экспериментального значения, и следует переходить к планам второго порядка.
Окончательно полином первой степени вида в рассматриваемой задаче имеет вид Y=24,75+12,25X1+5,25X2.
Коэффициенты при независимых переменных указывают на силу влияния факторов: чем больше численная величина коэффициента, тем большее влияние оказывает фактор на параметр оптимизации. Если знак коэффициента [+], то с увеличением значения фактора параметр оптимизации увеличивается, и наоборот. Величина коэффициента соответствует вкладу данного фактора в значение параметра оптимизации при переходе фактора с нулевого уровня на верхний или нижний. Но чаще, а особенно для качественных факторов, вклад фактора в параметр оптимизации оценивают по ЗНАЧЕНИЮ ЭФФЕКТА ФАКТОРА, представляющему собой значение вклада фактора в параметр оптимизации при переходе с нижнего на верхний уровень. Численно эффект фактора равен удвоенному значению коэффициента с сохранением знака.
Если линейная модель адекватна, то поставленная задача решена. В экстремальных задачах далее продолжается восхождение по градиенту, в интерполяционных – эксперимент заканчивается. А если линейная модель неадекватна? Можно ли, используя результаты ПФЭ, оценить нелинейность модели? Да. Один из часто встречающихся видов нелинейности связан с тем, что эффект фактора зависит от уровня, на котором находится другой фактор. В этом случае говорят, что имеется эффект взаимодействия факторов. Для его количественной оценки в матрицу планирования дополнительно помещается вектор столбец произведений двух факторов X1X2. При вычислении значения коэффициента взаимодействия пользуются известной уже формулой (22), поступая со столбцом взаимодействия так же, как с обычным столбцом матрицы. Заметим, что добавление в матрицу вектор – столбца эффекта взаимодействия фактора не изменяет свойств матрицы. Следует обратить внимание на то, что в задачах оптимизации необходимо стремиться сделать эффекты взаимодействия как можно меньшими, а в задачах интерполяции наоборот, выявление эффектов взаимодействия представляет собой практический интерес.