Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
конспект лекций по материаловедению.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
3.31 Mб
Скачать

5.1.1. Электрические свойства

К электрическим свойствам диэлектриков относят поляризацию, электропроводность, диэлектрические потери и пробой.

Поляризация диэлектриков. Диэлектрик, помещенный между электродами, к которым подводится электрическое напряжение, поляризуется.

Поляризация - это процесс, состоящий в ограниченном смеще­нии или ориентации связанных зарядов в диэлектрике при воздей­ствии на него электрического поля.

В любом веществе, в том чис­ле и в диэлектрике, независимо от наличия или отсутствия в нем свободных электрических заря­дов всегда имеются связанные заряды: электроны оболочек атомов, атомные ядра, ионы. Под действием внешнего элект­рического поля связанные элек­трические заряды в диэлектри­ке смещаются со своих равно­весных положений: положитель­ные к отрица­тельному электроду, а отрица­тельные - в обратном (рис. 5.1).

У диэлектриков, содержащих дипольные молекулы, при поляризации наблю­дается ориентация диполей в электрическом поле. Поляри­зация приводит к образованию в каждом элементарном объеме ди­электрика dV индуцированного (наведенного) электрического мо­мента dp.

(35)

Степень поляризованности диэлектрика оценивается относитель­ной диэлектрической проницаемостью . Чем выше ее значение, тем сильнее поляризуется диэлектрик.

Относительная диэлектрическая проницаемость представляет собой отношение заряда конденсатора с данным диэлектриком к заряду 0 вакуумного конденсатора тех же размеров, той же кон­фигурации электродов, при том же напряжении:

(36)

где - заряд конденсатора, когда между обкладками находится ди­электрик; 0 - заряд конденсатора, в котором диэлектриком является вакуум; - заряд, обусловленный поляризацией.

Рис. 5.1.Схема расположения зарядов в поляризованном диэлектрике: 1- диэлектрик; 2- обкладки электродов; S – площадь каждой обкладки; h- расстояние между электродами (толщина слоя диэлектрика).

Таким образом

(37)

Диэлектрическая проницаемость является количественной харак­теристикой, она всегда больше единицы.

Когда между обкладками конденсатора находится вакуум,

и (38)

где - диэлектрическая проницаемость вакуума.

Емкость конденсатора, в котором диэлектриком является ваку­ум, С0 определяется по следующей формуле:

(39)

Емкость конденсатора тех же размеров с диэлектриком

(40)

где h - толщина диэлектрика, м.

Отсюда относительная диэлектрическая проницаемость:

(41)

Увеличение диэлектрической проницаемости свидетельствует о том, что емкость конденсатора с данным диэлектриком увеличива­ется по сравнению с емкостью конденсатора, между обкладками которого находится вакуум.

В зависимости от строения диэлектрика и его агрегатного со­стояния различают электронную, ионную, дипольную, миграцион­ную, спонтанную и резонансную поляризацию.

Электронная поляризация - это смещение электронных ор­бит относительно положительно заряженного ядра под действием внешнего электрического поля. Она устанавливается за очень ко­роткое время после наложения электрического поля и составляет с. При увеличении размеров атома электронная поля­ризуемость увеличивается.

Электронная поляризация происходит во всех атомах любого ве­щества и, следовательно, во всех диэлектриках независимо от нали­чия в них других видов поляризации. Для веществ ионного строения существенна электронная поляризуемость не атомов, а ионов.

Запаздывание в установлении статического равновесия переме­щающихся зарядов по отношению к электрическому полю называ­ется релаксационной поляризацией.

Электронно-релаксационная поляризация проявляется в матери­алах, имеющих дефекты в электронном строении.

Ионная поляризация - это смещение друг относительно друга из положения равновесия разноименно заряженных ионов на рассто­яние, меньшее постоянной кристаллической решетки, в веществах с ионными связями. Она устанавливается также за малое, но все же большее, чем при электронной поляризации, время с.

Ионная поляризация, как и электронная, не связана с потерями энергии и не зависит от частоты.

Ионно-релаксационная поляризация присуща ионным диэлект­рикам со сравнительно слабым закреплением структурных частиц (например, изоляторный фарфор, нагревостойкая керамика, щелоч­ные изоляционные стекла). Она сопровождается рассеиванием элек­трической энергии и зависит от температуры и частоты тока.

Дипольная поляризация заключается в повороте (ориентации) дипольных молекул в направлении внешнего электрического поля.

Поляризованность при дипольной поляризации уменьшается после снятия приложенного напряжения, т.е. имеет место дипольно-релаксационная поляризованность.

Миграционная поляризация обусловлена наличием в тех­нических диэлектриках проводящих и полупроводящих включений и слоев с различной проводимостью.

При внесении неоднородных материалов в электрическое поле свободные электроны и ионы начинают перемещаться (мигриро­вать) в пределах каждого включения и накапливаться на границах, образуя поляризованные области.

Спонтанная (самопроизвольная) поляризация на­блюдается у диэлектриков с доменным строением, когда до прило­жения внешнего электрического поля в таких материалах уже име­ются небольшие поляризованные области.

Внешнее поле ориентирует домены, векторы электрических мо­ментов которых ориентированы хаотично и скомпенсированы в объеме материала, и диэлектрик поляризуется.

При самопроизвольной поляризации наблюдаются большие ди­электрические потери и резко выраженная зависимость диэлектри­ческой проницаемости от температуры и напряженности электри­ческого поля. Диэлектрическая проницаемость при этом может до­стигать очень высоких значений (до 100 000).

Материалы, обладающие таким видом поляризации, называют­ся сегнетодиэлектриками (сегнетовая соль, титанат бария BaTiO2 , титанат стронция SrTiO3 и др.).

Резонансная поляризация проявляется в области сверхвы­соких частот у газов и твердых диэлектриков с дефектами в крис­таллической структуре.

В зависимости от механизма поляризации все диэлектрики мож­но разделить на полярные и неполярные.

Полярные диэлектрики составляют группу материалов, со­держащих постоянные электрические диполи, которые способны к переориентации во внешнем электрическом поле.

В полярных диэлектриках наблюдается электронная и дипольно-релаксационная поляризация. Они имеют худшие электрические свойства по сравнению с неполярными диэлектриками и применяются в качестве электроизоляционных материалов в области низких частот.

Полярными являются поливинилхлорид, эпоксидные смолы, фторопласт – 3, органическое стекло и др.

Неполярные диэлектрики составляют группу материалов, не содержащих диэлектрические диполи, которые способны к пере­ориентации во внешнем электрическом поле.

В неполярных диэлектриках наблюдается в основном электрон­ная поляризация. Они применяются как высококачественные элек­троизоляционные материалы в технике высоких и сверхвысоких частот.

Неполярными являются воздух, полистирол, полиэтилен, фторопласт-4, бензол и др.

Электропроводность диэлектриков. Диэлектрические материалы обладают некоторой электропроводностью, которая связана с на­правленным перемещением заряженных частиц (электронов, ионов, молионов).

Электропроводность диэлектриков в большинстве случаев но­сит ионный характер, т.е. носителями зарядов являются ионы.

Электропроводность диэлектриков оценивается удельным элек­трическим сопротивлением постоянному току, Ом*м,

, (42)

где у- удельная электрическая проводимость, См/м.

При включении диэлектрика в цепь постоянного напряжения происходит резкий скачок тока, а затем уменьшение его до посто­янного значения. Это постоянное значение называется током сквоз­ной проводимости Iск.

Спадающий во времени ток, обусловленный перераспределением свободных зарядов, принято называть абсорбционным Iаб.

Ток, сопутствующий электронной и ионной поляризации, назы­вают током смещения; его мгновенное значение обозначают Iсм.

Таким образом, ток, проходящий через диэлектрик, представля­ет собой сумму токов смещения Iсм, абсорбции Iаб и сквозного Iск .

I = Iсм + Iаб + Iск (43)

Так как абсорбционный ток быстро затухает, электропровод­ность изолирующих материалов при постоянном напряжении оп­ределяется по сквозному току:

(44)

где Iск = IIсмIаб - ток сквозной проводимости; I- общий ток, A;

U- приложенное напряжение, В.

При определении электропроводности диэлектрика необходи­мо измерять ток, когда Iсм + Iаб = 0

В зависимости от конструкции электротехнических изделий при­нято различать удельное объемное электрическое сопротивление и удельное поверхностное электрическое сопротивление.

Удельное объемное электрическое сопротив­ление рv определяет свойства изоляции, когда основные утечки тока происходят через объем материала, например в экранирован­ном электрическом проводе.

Удельное объемное электрическое сопротивление рv, численно равно сопротивлению образца материалов в виде кубика с ребром единичных размеров, когда напряжение прикладывается к двум его противоположным граням. Для плоских образцов:

, (Ом*м) (45)

где RV - объемное сопротивление образца постоянному току. Ом; S- площадь элект­родов, контактирующих с испытуемым образцом, м2; b - толщина образцов, м.

Удельное поверхностное электрическое сопро­тивление рs является важнейшей характеристикой при оценке изо­ляционных материалов в таких деталях, как линейные изоляторы.

Удельное поверхностное сопротивление рs численно равно со­противлению образца материала в виде квадрата со стороной еди­ничных размеров при прохождении тока через две его противопо­ложные стороны:

, (Ом*м ) (46)

где R - поверхностное сопротивление материала образца, находящегося между электродами, Ом; / - длина электродов; h - расстояние между электродами, м.

Удельное объемное и поверхностное электрические сопротивле­ния р твердых диэлектриков зависят от температуры, влажности и величины приложенного напряжения.

Электропроводность многих изоляционных материалов зависит не только от строения и химического состава, но и от технологии их изготовления.

Поверхностная электропроводность твердых диэлектриков оп­ределяется наличием в их строении адсорбированных водно-кол­лоидных пленок. По отношению к воде изоляционные материалы делятся на не смачиваемые и смачиваемые. К не смачиваемым материалам относятся, например, воски, янтарь, полистирол и др. Их поверхностная проводимость мала и не зависит от влажности воз­духа. К смачиваемым материалам относятся электроизоляцион­ные стекла, мрамор, бумага, многие виды пластмасс. Электропро­водность у них зависит от влажности окружающей среды.

Диэлектрические потери. Диэлектрические потери связаны со сложными явлениями, которые происходят в материале при воз­действии на него электрического поля. Они проявляются на посто­янном и переменном токе. Однако качество диэлектрика на посто­янном токе обычно характеризуется не диэлектрическими потеря­ми, а удельным объемным и поверхностным сопротивлениями.

При воздействии электрического поля на любое вещество часть потребляемой им электрической энергии превращается в тепловую и рассеивается.

Рассеянную часть поглощенной диэлектриком электрической энергии называют диэлектрическими потерями.

Рис. 5.2. Векторная диаграмма плотности тока в диэлектрике:

- угол сдвига суммарного тока относительно тока идеального диэлектрика; у - угол сдвига фаз между током и напряжением;

Jсм - плотность тока смещения;

Jпр - плотность тока проводи­мости; J - плотность общего тока

В диэлектрике, помещенном в пе­ременное электрическое поле с напря­женностью Е и угловой частотой , возникают ток смещения и ток прово­димости (рис. 5.2). Угол между век­торами плотности переменного тока диэлектрика J и тока смещения J на комплексной плоскости называют уг­лом диэлектрических потерь. Тангенс этого угла является одним из важней­ших параметров не только диэлектри­ков, но также конденсаторов, изоля­торов и других электроизоляционных материалов. Тангенс угла диэлектри­ческих потерь определяет активную мощность, которая теряется в диэлек­трике, работающем под переменным напряжением. Он выражается отноше­нием плотности тока проводимости J пр к плотности тока смещения J см:

, (47)

Введение безразмерного параметра удобно потому, что он не зависит от формы и размеров участка изоляции, а определяется лишь свойствами диэлектрического материала.

Чем выше тангенс угла диэлектрических потерь ,тем больше нагрев диэлектрика в электрическом поле заданной частоты и на­пряжения.

Пробой. Явление образования в диэлектрике проводящего кана­ла под действием электрического' поля называют пробоем.

Если проводящий канал проходит от одного электрода к друго­му и замыкает их, происходит полный пробой.

Если проводящий канал не достигает хотя бы одного из элект­родов, происходит неполный пробой.

При частичном пробое пробивается лишь газовое или жидкое включение твердого диэлектрика.

У твердых диэлектриков кроме пробоя по объему возможен про­бой по поверхности, такой пробой называют поверхностным.

Минимальное напряжение, приводящее к пробою диэлектрика, называют пробивным напряжением Uпр . Пробивное напряжение Uпр растет с увеличением толщины диэлектрика h. Для характеристики способности материала противостоять разрушению в электричес­ком поле используют напряженность электрического поля, при ко­торой происходит пробой, мВ/м,

, (48)

где Uпр – величина положительного к диэлектрику напряжения, при котором произошел пробой, кВ; h- толщина материала в месте пробоя, м.

Напряженность однородного электрического поля, приводящую к пробою, называют электрической прочностью.

Механизмы пробоя газообразных, жидких и твердых диэлектриков имеют существенные различия.