
- •Безопасность жизнедеятельности
- •Практическое занятие № 1.
- •Оптимальные значения параметров микроклимата на рабочих местах производственных помещений при относительной влажности воздуха
- •Допустимые значения параметров микроклимата на рабочих местах производственных помещений при относительной влажности воздуха
- •Практическое занятие № 2.
- •Предельно допустимые концентрации вредных веществ
- •Устройство прибора и составных частей
- •Порядок работы
- •Практическое занятие № 3.
- •Практическое занятие № 4.
- •О несчастном случае на производстве
- •Практическое занятие № 5.
- •Виды инструктажей
- •Форма программы вводного инструктажа
- •Программа
- •Программа первичного инструктажа
- •Форма программы первичного инструктажа на рабочем месте
- •Программа
- •Практическое занятие № 7.
- •Практическое занятие № 12.
- •Способы прекращения горения
- •Практическое занятие № 15.
- •1. Средства индивидуальной защиты.
- •2.1. Респиратор
- •Респиратор р-2
- •2.2. Противогаз
- •Фильтрующий противогаз
- •Правила пользования гопкалитовым патроном
- •Подбор шлем-маски
- •Правила пользования противогазом
- •Изолирующий противогаз
- •Подготовка изолирующего противогаза к использованию
- •Правила пользования изолирующим противогазом
- •Меры безопасности и некоторые особенности работы в изолирующих противогазах
- •Применение незапотевающих пленок
- •Практическое занятие № 16.
- •П ринцип работы аэс
- •Облучение и лучевая болезнь
- •Защита сельскохозяйственных животных от радиоактивных веществ при авариях на радиационно-опасных объектах экономики
- •Решение типовой задачи по оценке радиационной обстановки при аварии на аэс
- •Задание:
- •Значение апроксимационных коэффициентов
- •Варианты задания по оценке радиационной обстановки
- •Практическое занятие № 17.
- •Ядовитые вещества промышленного происхождения, в том числе кислоты и щелочи
- •Токсичность химические опасных веществ и характер их воздействия на организм
- •Оценка химической обстановки по данным прогноза
- •Оценка химической обстановки
- •Разработка и реализация планов защиты
- •Вариант оценки химической обстановки
- •Характеристика сдяв и вспомогательные коэффициенты для определения глубин зон заражения
- •Значения коэффициентов к5, к8
- •Значения коэффициента к6
- •Предельные значения глубин переноса воздушных масс
- •Угловые размеры зоны возможного заражения
- •Определение степени вертикальной устойчивости воздуха (свув) по прогнозу погоды
- •Возможные потери рабочих, служащих и населения от сдяв в очаге поражения, %
- •Обязанности штаба и служб гз по оценке химической обстановки
- •Планирование мероприятий по защите людей, животных, материальных средств и ликвидации последствий химического заражения на территории объекта
- •Практическое занятие № 18.
- •Критическая плотность теплового потока, qкр ,Вт/м2
- •Приведенная степень черноты, Епр
- •Взрыв обычных взрывчатых веществ (овв)
- •Для расчетов используются данные таблиц 18.5, 18.6 и 18.7.
- •Степень защиты населения
- •I. Типовая задача по взрывам обычных взрывчатых веществ (овв)
- •Решение:
- •Взрыв гвс
- •II. Типовая задача по взрывам гвс
- •Решение:
- •Практическое занятие №19.
- •Практическое занятие № 20.
- •Легкий защитный костюм
- •Защитный комбинезон
- •Защитный костюм
- •Практическое занятие № 21.
- •Приемлемый риск
- •Мотивированный (обоснованный) и немотивированный (необоснованный) риск
- •Расчет 1 вариант
- •I. Определить риск от отдельного источника
- •II. Установить вид персональной деятельности работника по степени безопасности (стр. ) и сравнить с индивидуальным риском по таб.1. Сделать выводы.
- •Произвести анализ риска путем построения дерева событий.
- •Исходные данные для расчета
- •Практическое занятие № 22.
- •1.1. Идентификация опасностей
- •1.2.Причины и следствия
- •1.3. Квантификация опасностей
- •1.4. Концепция риска
- •1.6. Управление риском
- •2.1. Качественный анализ опасности систем «Человек-Машина»
- •2.2. Предварительный анализ источников опасности
- •2.3. Анализ последствий отказов технических элементов
- •Ранжирование отказов по тяжести вызываемого происшествия
- •Ранжирование отказов по частоте вызываемого происшествия
- •2.4. Анализ последствий ошибок и неправильного поведения человека оператора системы "человек- машина"
- •Виды потенциальных ошибок оператора
- •Классификатор причин ошибок
- •Классификатор ориентировочных значений вероятности ошибки
- •2.5. Понятие риска опасного состояния системы "человек - машина"
- •2.6. Функция опасности для системы "человек - машина"
- •2.7. Методы оценки риска несчастных случаев и экономического ущерба при опасных состояниях систем «человек- машина»
- •Алгоритм построения дерева и определения вероятностей
- •Логические элементы дерева происшествий
- •1. Пример выполнения упражнения №1 Задание
- •Решение
- •Решите самостоятельно следующие задания
- •2. Пример выполнения упражнения №2 Задание
- •Решение
- •Файл материалов
- •Экспериментальные характеристики безошибочности
- •Практическое занятие № 23.
- •Требования к монитору
- •Визуальные эргономические параметры вдт и пределы их измерений
- •Нормируемые визуальные параметры видеодисплейных терминалов
- •ГосТы на мониторы и пэвм
- •Требования к помещениям для эксплуатации мониторов и пэвм
- •Требования к микроклимату, содержанию аэроионов и вредных веществ в воздухе помещений при эксплуатации вдт и пэвм
- •Оптимальные нормы микроклимата для помещений с вдт и пэвм
- •Требования к шуму и вибрации
- •Допустимые нормы вибрации на всех рабочих местах с вдт и пэвм, включая учащихся и детей дошкольного возраста
- •Требования к освещению помещений и рабочих мест с вдт и пэвм
- •Требования к организации и оборудованию рабочих местс вдт и пэвм
- •Идеальная поза оператора компьютера
Оценка химической обстановки по данным прогноза
Исходными данными для прогнозирования химической обстановки являются:
1) Тип и общее количество СДЯВ на ХОО, их размещение в емкостях и технологических трубопроводах.
2) Количество СДЯВ, выброшенных в атмосферу (Q0) и характер их разлива па подстилающей поверхности ("свободно", "в поддоне", "в обваловку").
Qm- при аварии - количество СДЯВ в минимальной по объему единичной емкости: для сейсмических районов - общий запас СДЯВ: на газо- и продуктопроводах - максимальное количество СДЯВ, содержащееся в трубопроводе между автоматическими отсекателями.
Схема оценки химической обстановки
Количество
районов, подвергшихся воздействию
Определение
последствий
р
азрушения
(аварии)
М
асштабы
разрушения (аварии)Оценка химической обстановки
Разработка и реализация планов защиты
М
асштабы
химического
заражения
П
родолжительность
заражения
К
оличественные
характеристики выбросов
Опасность
химического заражения
Распределение
выбросов по месту и времени
- h для свободно разлившихся на подстилающей поверхности - 0.05 м:
при разливе из единичных емкостей в самостоятельный поддон (обвалование)
h = Н - 0,2 , (1)
где Н = высота поддона (обвалования), м;
- при разливе из группы емкостей, имеющих общий поддон (обвалование)
,
(2)
где Q0- количество выброшенных СДЯВ, т;
F - площадь разлива, м2;
d - плотность СДЯВ, г/см3.
3) Для определения количественных характеристик выброса СДЯВ необходимо определить их эквивалентные значения.
При аварии на ХОО эквивалентное количество СДЯВ по первичному облаку (Qэ1) определяется по формуле:
,
(3)
где k1- коэффициент, зависящий от условий хранения СДЯВ (для сжатых газов k1= 1)
k3- коэффициент, равный отношению пороговой токсодозе Cl2, к пороговой токсодозе др. СДЯВ;
k5- коэффициент, учитывающий степень вертикальной устойчивости воздуха
k7- коэффициент формулы (1);
Q0- количество выброшенного (разлившегося) при аварии СДЯВ, т.
При аварии на хранилищах сжатого газа величина Q0 рассчитывается по формуле:
где d - плотность СДЯВ, т/м3;
Vx - объем хранилища, м3.
При авариях на газопроводе величина Q0 рассчитывается по формуле:
,
где n - процентное содержание СДЯВ в природном газе,
d - плотность СДЯВ, т/м3 Vг - объем секции газопровода между автоматическими отсекателями, м3.
Для определения величины Qэ1 для сжиженных газов, не вошедших в таблицу, значение коэффициента k7 принимается равным 1, а значение коэффициента k1 рассчитывается по соотношению:
где Сp - удельная теплоемкость сжиженного СДЯВ, кДж/кг·град;
Т - разность температур жидкого СДЯВ до и после разрушения емкости, °С,
Нисп - удельная теплота испарения жидкого СДЯВ при температуре испарения, кДж/кг.
По вторичному облаку эквивалентное количество СДЯВ определяется по формуле:
,
(4)
где k1; k2; k3; k4; k5; k7- коэффициенты из формул (1-3),
k6 - коэффициент, зависящий от времени, прошедшего после аварии N.
Значение коэффициента k6определяется после расчета продолжительности испарения вещества (Т, ч).
При
N>Т,
k6
=
.
Если
N<Т, k6=
,
если Т<1ч => k6
принимается равным для
1ч.
При определении величины Qэ2 для веществ, не вошедших в табл. 17.1, значение коэффициента k7 принимается равным 1, а значение k2, определяется по формуле:
k2
= 8,10 · 10-6
·
р·
,
где р - давление насыщенного пара вещества при заданной Т, мм.рт. ст.;
М - молекулярная масса вещества.
В случае разрушения химически опасного объекта эквивалентное количество СДЯВ в облаке зараженного воздуха определяется только для вторичного облака при свободном разливе. При этом суммарное эквивалентное количество рассчитывается по формуле:
,
где k2i- коэффициент, зависящий от физико-химических свойств i-го СДЯВ;
k3i - коэффициент, равный отношению пороговой токсодозы хлора к пороговой токсодозе i-го СДЯВ;
k6i –коэффициент, зависящий от времени, прошедшего после разрушения объекта;
k7i - поправка на температуру для i-го СДЯВ;
Qi - запасы i-го СДЯВ на объекте, т;
di
- плотность i-го
СДЯВ,
.
Для определения масштаба (глубина и площадь) заражения при аварии на ХОО прежде всего рассчитывается глубина зоны химического заражения. Полная глубина зоны заражения (Г, кг), обусловленная воздействием первичного и вторичного облака СДЯВ, определяется по формуле:
Г = Г/ + 0,5 · Г// , (5)
где Г//- наименьший;
Г/ наибольший из размеров Г1 и Г2.
Полученное значение Г сравнивается с предельно возможным значением глубины переноса воздушных масс (Гп , км), определяемым по формуле:
Гп = N · , (6)
где N - время начала аварии, ч;
- скорость переноса переднего фронта зараженного воздуха при данных скорости ветра и степени вертикальной устойчивости воздуха, км/ч .
Сравнивая значения полной глубины зоны заражения Г и предельно возможного значения глубины переноса воздушных масс, Гп для дальнейших расчетов выбирают наименьшее значение.
В случае разрушения химически опасного объекта при прогнозировании глубины заражения рекомендуется брать данные на одновременный выброс суммарного запаса СДЯВ на объекте и следующие метеоусловия:
инверсия, скорость ветра V = 1 м/с.
Полученные по таблице значения глубины зоны заражения Г в зависимости от рассчитанной величины Оэ и скорости ветра сравнивайся с предельно возможным значением глубины переноса воздушных масс Гп . За окончательно рассчитанную глубину зоны заражения принимается меньшее из двух сравниваемых между собой значений.
Площадь
зоны возможного заражения первичным
(вторичным) облаком СДЯВ (Sв,
)
определяются по формуле
,
(7)
где Г - глубина зоны заражения, км;
- угловые размеры зоны возможного заражения.
Площадь зоны фактического заражения (Sф , км2) рассчитывается по формуле:
Sф
= kв
· Г2
·
, (8)
где kв - коэффициент, зависящий от степени вертикальной устойчивости возду- ха;
N- время после аварии, ч.
Время подхода ОЗВ (облака зараженного воздуха) к объекту оценивается с целью принятия решения о проведении необходимых защитных мероприятий при угрозе химического заражения объекта. Оно зависит от скорости переноса облака воздушным потоком и определяется по формуле:
,
(9)
где Х - расстояние от источника заражения до заданного объекта, км;
- скорость переноса переднего фронта облака зараженного в зависимости от скорости ветра, км/ч.
Время поражающего действия СДЯВ определяется по формуле:
,
(10)
где h - толщина слоя СДЯВ, при свободном разливе СДЯВ=0.05 м;
d
-удельный
вес (плотность) СДЯВ, г/
;
k2- коэффициент, зависящий от физико-химических свойств СДЯВ;
k4- коэффициент, учитывающий скорость ветра;
k7- коэффициент, зависящий от времени, прошедшего после начала аварии.
Скорость химического заражения оценивается потерями. Потери в масштабах городов, областей и регионов определяются с учетом нахождения людей в укрытиях, на открытой местности и от степени обеспечения противогазами. Потери определяются по формуле:
,
(11)
где Sф - площадь фактического заражения, км2;
b - процент потерь (на открытой местности и в укрытиях), .
Потери на объекте агропромышленного производства определяются по формулам:
,
,
N - количество человек на открытой местности или в укрытиях;
b - процент потерь.
Зона химического заражения наносится на схему в зависимости от скорости ветра, либо в виде окружности, либо в виде полуокружности.
1. При ≤ 0,5 м/с - в виде окружности (рис.17.1).
Точка (О) соответствует источнику заражения. Угловой размер зоны ()=360°. Радиус окружности (г) равен глубине зоны заражения (Г).
Рис. 17.1 Зона химического заражения при ≤ 0,5 м/с.
2. При 0,5< < 1м/с - зона химического заражения имеет вид полуокружности (рис.17.2). Условный размер зоны () = 180°. Радиус полуокружности (r) равен глубине зоны заражения (Г). Биссектриса полуокружности совпадает с осью следа облака и ориентирована по направлению ветра.
Рис. 17.2 Зона химического заражения при 0,5< < 1м/с.
3. При > 1 м/с зона заражения имеет вид сектора, где Rсектора = Гзаражения (рис.17.3).
Биссектриса сектора совпадает с осью следа облака и ориентирована по направлению ветра.
= 90 при скорости ветра от 1,1 до 2 м/с,
= 45° при скорости ветра больше 2 м/с.
Рис. 17.3 Зона химического заражения при >1м/с.