Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы микроэлектроники.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
87.95 Кб
Скачать

93. Физика процессов в р-n переходах (основные характеристики) при наличии внешнего поля. Классификация диодов. Вольтамперная характеристика. Прямое и обратное включение диода.

ЭЛЕКТРО́ННО-ДЫ́РОЧНЫЙ ПЕРЕХО́Д (p-n-переход, n-p-переход), переходная областьполупроводника, в которой имеет место пространственное изменение типа проводимости от электронной n к дырочной p .Электронно-дырочный переход является основой широкого класса твердотельных приборов для нелинейного преобразования электрических сигналов в различных устройствах электронной техники.

В состоянии равновесия уровень Ферми в n- и p-областях выравнивается. Происходит это в результате следующих процессов. На представленной схеме изображен полупроводниковый монокристалл, (например, германий или кремний), правая часть которого легирована донорной примесью и обладает n-типом проводимости, а левая часть монокристалла легирована акцепторной примесью и является полупроводникомp-типа проводимости. В общем случае концентрация доноров и акцепторов может быть неодинакова.

Так как концентрация электронов в правой части кристалла (в донорной области) выше, электроны проводимости будут диффундировать в левую часть кристалла через границу раздела и рекомбинировать с дырками. Дырки будут диффундировать в противоположном направлении. В результате в приконтактной области донорного полупроводника практически не остается свободных электронов, и в ней формируется объемный положительный заряд неподвижных ионизированных доноров. Ионизированные акцепторы создают область отрицательного пространственного заряда в акцепторном полупроводнике. Взаимная диффузия электронов и дырок продолжается до тех пор, пока электрическое поле, которое возникает от заряда неподвижных доноров и акцепторов, не остановит диффузионный ток, и в полупроводнике появится потенциальный барьер UD,

препятствующий самопроизвольному току в кристалле. Этот потенциал играет роль контактной разности потенциалов. Это же поле выталкивает неосновные носители, перебрасываемые из одной области в другую, и в условиях теплового равновесия при отсутствии внешнего электрического напряжения, полный ток через электронно-дырочный переход равен нулю.

Таким образом, в электронно-дырочном переходе существует динамическое равновесие, при котором небольшой ток, создаваемый неосновными носителями (электронами вр-области и дырками в n-области), течет к p-n-переходу и проходит через него под действием контактного поля. Равный по величине ток, создаваемый диффузией основных носителей (электронами в n-области и дырками в р-области), протекает через переход в обратном направлении. При этом основным носителям приходится преодолевать контактное поле (потенциальный барьер). Разность потенциалов, возникающая между p- и n-областями из-за наличия контактного поля (контактная разность потенциалов или высота потенциального барьера), обычно составляет десятые доли вольта.

Область перехода между p- и n-частями кристалла будет иметь толщину L, которую можно разбить на две составляющие Lp и Ln, расположенные, соответственно, в p- иn-областях кристалла. Расчеты показывают, что: Ln/Lp = (Na/Nd)1\2, где Na и Nd — концентрации акцепторов и доноров, соответственно. То есть p-n- переход располагается преимущественно в наименее легированной области. Если концентрации доноров и акцепторов равны, то переход будет симметричным, если концентрации не равны, то — несимметричным.

По характеру распределения примесей p-n- переходы подразделяют на резкие и плавные. В случае резкого перехода потенциал UD простирается на малую длину, в случае плавного перехода — на значительную. Как правило, плавные p-n- переходы получают методом диффузионной технологии, когда осуществляется диффузия акцепторной примеси в донорный полупроводник и наоборот. Диффузия может происходить из газовой, жидкой или твердой фазы. Так как концентрация легирующей примеси при диффузии уменьшается вглубь образца постепенно, образуется плавный p-n- переход, границей которого и будет граница областей кристалла с электронным или дырочным типом проводимости. Резкий p-n- переход можно получить методами эпитаксии и ионной имплантации.

p-n- переходы, в которых по обе стороны перехода находятся полупроводники с различной шириной запрещенной зоны, например, германий — арсенид галлия, арсенид галлия — фосфид индия и т. д., называются гетеропереходами.

Внешнее электрическое поле изменяет высоту потенциального барьера и нарушает равновесие потоков носителей тока через него. Если напряжение источника питания приложено таким образом, что плюс подсоединен к p-области кристалла, а минус — кn-области, то такое направление называется пропускным. В этом случае внешнее поле направлено против контактного, то есть потенциальный барьер понижается (прямое смещение). С ростом приложенного напряжения экспоненциально возрастает число основных носителей, способных преодолеть потенциальный барьер. Концентрация неосновных носителей по обе стороны электронно-дырочного перехода увеличивается за счет инжекции неосновных носителей, одновременно в р- и n-области через контакты входят равные количества основных носителей, вызывающих нейтрализацию зарядов инжектированных носителей. В результате возрастает скорость рекомбинации и появляется отличный от нуля ток через электронно-дырочный переход. При повышении приложенного напряжения этот ток экспоненциально возрастает.

При обратной полярности (обратном смещении), когда положительный полюс источника питания подключен к n-области, а отрицательный — к р-области, потенциал в области перехода становится равным UD + U, где U — величина приложенного напряжения.

Повышение потенциального барьера приводит к тому, диффузия основных носителей через p-n-переход становится пренебрежимо малой. В то же время потоки неосновных носителей через переход не изменяются, поскольку для них барьера не существует. Потоки неосновных носителей определяются скоростью тепловой генерации электронно-дырочных пар. Эти пары диффундируют к барьеру и разделяются его полем, в результате чего через p-n-переход течет ток насыщения, который обычно мал и почти не зависит от приложенного напряжения.

Таким образом, зависимость тока через p-n-переход от приложенного напряжения U(вольтамперная характеристика) обладает резко выраженной нелинейностью. При изменении знака напряжения ток через p-n-переход можетменяться в 105-106 раз. Благодаря этому p-n-переход является вентильным устройством, пригодным для выпрямления переменных токов (см. Полупроводниковый диод).

Характер вольт-амперной характеристики — кривизна восходящей ветви, напряжение отсечки, абсолютные значения токов, коэффициент выпрямления (отношение прямого и обратного токов при напряжении 1 В), и другие параметры определяются видом полупроводника, концентрацией и типом распределения примесей вблизи n-p-перехода. Изменение напряжения, приложенного к p-n-переходу, приводит к расширению или уменьшению области пространственного заряда. Объемные заряды представляют собой неподвижные и связанные с кристаллической решеткой ионы доноров и акцепторов, поэтому увеличение объемного заряда может быть обусловлено только расширением его области и, следовательно, уменьшением емкости p-n-перехода. При прямом смещении к емкости слоя объемного заряда, которая называется также зарядной или барьерной екостью, добавляется диффузионная емкость, обусловленная тем, что увеличение напряжения на p-n- переход приводит к увеличению концентрации неосновных носителей, то есть к изменению заряда. Зависимость емкости от приложенного напряжения позволяет использовать p-n-переход как электрический конденсатор переменной емкости — варикап. Зависимость сопротивления p-n-перехода от величины и знака приложенного напряжения позволяет использовать его в качестве регулируемого сопротивления —варистора.

При подаче на электронно-дырочный переход достаточно высокого обратного смещенияU = Uпр возникает электрический пробой, при котором протекает большой обратный ток. Состояние, при котором происходит электрический пробой p-n- перехода, является нормальным режимом работы некоторых полупроводниковых приборов, например,стабилотронов.

В зависимости от физических процессов, обуславливающих резкое возрастание обратного тока, различают три основных механизма пробоя p-n-перехода: туннельный, лавинный, тепловой.

Туннельный (зинеровский) пробой, возникает при туннелировании носителей сквозь барьер (см. Туннельный эффект), когда происходит, например, туннельное просачивание электронов из валентной зоны p-области в зону проводимости n-области полупроводника. Туннелирование электронов происх. в том месте p-n-перех., в кот-м в рез-те его неоднор-ти возник.наиб. высок.напряж-ть поля. Напряж-е тун. пробоя p-n-перех.завис. не только от концентрац.легирующ.примеси и критич.напряж-ти поля, при кот-й происх.возраст-е туннельного тока ч/з p-n-пер., но и от толщины p-n- перех.. С увелич.толщ. p-n-перех.вероятность туннельного просачив-я электронов уменьш-ся, и более вероятным стан-ся лавинный пробой.

При лавин. пробое p-n-перех. на длине своб. пробега в обл.объемного заряда носитель заряда приобрет. энергию, достаточн. для ионизации.кристаллич. решетки, т.е.в его основе леж.ударн.ионизац.. С ростом напряж-ти электрич. поля интенс-ть ударн.ионизац.сильно увелич-ся и процесс размнож-я свободн. носителей заряда (электронов и дырок) приобрет. лавин.й хар-р. В рез-те ток в p-n- переходе неогранич.возр. до теплового пробоя.

Теплов. пробой, связ-ный с недостаточн-ю теплоотвода, как прав., локализ-ся в отд-ных обл., где наблюд-ся неоднородность структуры p-n-перехода, а, след-но, и неоднор-ть протекающ.ч/з него обратного тока. Повыш-е темпер.. вызыв. дальнейшее увелич.обратного тока, что в свою очередь, вызывает увеличение температуры. Тепловой пробой — необратимый процесс, преобладающий в полупроводниках с относительно узкой запрещенной зоной