Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
П-16 (АЛСН катушки + усилитель).doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
690.18 Кб
Скачать

3. Приемные катушки

Каждая приемная катушка состоит из сердечника, набранного из листовой стали, на котором помещена обмотка из 3200 витков медного провода. Обмотка заключена в защитный силуминовый кожух. Обмотки имеют следующие электрические характеристики: активное сопротивление переменному току частотой 50 Гц для катушек, устанавливаемых на тепловозах, составляет 400 Ом, а на электровозах – 650 Ом. Индуктивность катушек для тепловозов составляет 6,0 0,25 Гн, а для электровозов – 7,1 0,25 Гн. Сигнальный ток АЛСН в рельсах величиной 10 А и частотой 50 Гц должен наводить в каждой из катушек, подвешенных на высоте 150 мм над уровнем головки рельса, ЭДС не менее 0,8 В. Расстояние между катушкой и головкой рельса, которое меняется в процессе эксплуатации вследствие износа бандажей колес, должно быть при любых условиях не более 180 мм и не менее 100 мм.

Индуктированные в приемных катушках сигналы подаются через локомотивный фильтр типа ФЛ25/75 М на входы локомотивного усилителя.

4. Локомотивный фильтр

Д ля защиты от тягового тока частотой 50 Гц и его гармонических составляющих в локомотивных устройствах АЛСН отечественных железных дорог применяется локомотивный фильтр типа ФЛ25/75 М /рис. 1/. Фильтр имеет две полосы пропускания. Ширина полосы пропускания частоты 25 Гц равна 10…14 Гц, ширина полосы пропускания частоты 75 Гц составляет 20…25 Гц. Фильтр ослабляет сигналы помех частотой 50 Гц – в 1000 раз, 100 Гц – в 40 раз, 150 Гц – в 500 раз /2/.

Фильтр ФЛ 25/75 М имеет Т-образную схему. Входное продольное плечо образует два контура: последовательный, содержащий приемные катушки локомотива и конденсатор С1, и параллельный, образованный элементами ДР3-С3. Выходное продольное плечо фильтра содержит также два контура: параллельный контур ДР6-С6 и последовательный контур ДР5-С7-С5. Поперечное плечо фильтра строится из двух соединенных последовательно параллельных контуров: ДР2-С2 и ДР4-С4.

Параметры индуктивностей и емкостей контуров подобраны определенным образом. Так, контур, содержащий приемные катушки и конденсатор С1, имеет резонанс на частоте 37,5 Гц; контур ДР3-С3 обладает наибольшим сопротивлением току частотой 50 Гц – около 40 кОм создавая “пробку” для прохождения сигналов этой частоты на выход фильтра; контуры ДР2-С2 и ДР4-С4 настроены соответственно на 25 и 75 Гц и имеют в то же время весьма малое сопротивление для токов частотой 50 Гц, шунтируя от помех этой частоты выход фильтра.

Для сигнального тока частотой 25 Гц полные сопротивления последовательных контуров продольных плеч фильтра имеют емкостной, а параллельных – индуктивный характер, образуя в целом цепь, настроенную на резонанс токов частотой 25 Гц. В то же время последовательные контуры продольных плеч фильтра для токов частотой

75 Гц представляют собой индуктивное, а параллельные контуры – емкостное сопротивление, создавая цепь, настроенную на резонанс токов частотой 75 Гц. Таким образом, обе сигнальные частоты АЛСН проходят с минимальными потерями с входа на выход фильтра.

7. Локомотивный усилитель

На отечественных железных дорогах эксплуатируются два типа локомотивных усилителей сигналов АЛСН: типа УК25/50М и его модернизированный вариант типа УК25/50М-Д /рис. 2/. Модернизация усилителя выполнялась с целью повышения надежности его работы, уменьшения влияния на его функционирование низких температур, упрощения технического обслуживания и ремонта, а также в связи с заменой элементов усилителя на более совершенные /3/.

В локомотивном усилителе типа УК25/50М-Д можно условно выделить четыре функциональных узла: входной, собственно усилитель, выходной и узел регулировки.

Основными элементами входного узла являются трансформаторы Т1 и Т2, обеспечивающие согласование относительно низких выходных сопротивление приемных катушек и локомотивного фильтра с достаточно высоким входным сопротивлением первого каскада усилителя. Во входном узле при приеме кодового сигнала частотой 50 Гц образуется фильтр, настроенный на эту частоту, состоящий из двух связанных контуров. Первый контур образован индуктивностью приемных катушек, первичной обмоткой трансформатора Т1 и емкостью С1 /реле В – включено/. Второй контур включает индуктивность вторичной обмотки того же трансформатора и емкость конденсатора С2. Этот фильтр имеет полосу пропускания 45…55 Гц. Добротность фильтра равна пяти.

Усилитель выполнен на транзисторах VT1…VT5 типа КТ209Е. Первые три каскада усилителя построены по однотактной, а последний четвертый каскад – по двухтактной схеме. Благодаря многокаскадности усилитель имеет коэффициент усиления около 10000. /мощность на входе усилителя может составлять величину порядка 5 мкВт, а выходная мощность должна быть не менее 50 мВт/.

Особенностью усилителя является наличие между его вторым и третьим каскадами схемы автоматической регулировки усиления /АРУ/.

Транзистор VT1 первого каскада включен по схеме с общим эмиттером. Конденсатор С5, емкостью 0,05 мкФ, включенный между его базой и эмиттером, шунтирует вход первого каскада по переменному току высокой частоты, предотвращая самовозбуждение усилителя. Напряжение смещения на базу транзистора подается с резистора R8, входящего в делитель R8, R9, R15. Оно составляет около 2В. Резистор R7 ограничивает его коллекторный ток.

Резисторы R5 и R6 образуют отрицательную обратную связь по постоянному току, что способствует стабилизации рабочей точки транзистора при изменении температуры окружающей среды. Для исключения отрицательной обратной связи по переменному току эмиттера этот резистор зашунтирован конденсатором C4, имеющим большую емкость /2000 мкФ/. Благодаря большой емкости конденсатор С4 поддерживает постоянное напряжение на резисторе R5 при значительных изменениях эмиттерного тока, так как в отрицательный полупериод конденсатор С4 не успевает существенно разрядиться. Резистор R6 является элементом отрицательной обратной связи по переменному току, которая ограничивает ток базы, а следовательно, и коллекторный ток при увеличении тока базы.

Транзистор VT2 второго каскада усилителя включен по схеме с общим коллектором /эмиттерный повторитель/. Такая схема имеет сильную отрицательную обратную связь, стабилизирующую работу транзистора. Резисторы R8 и R10 выполняют функцию отрицательной обратной связи по постоянному, а резистор R10 – по переменному току.

Транзистор VT3 третьего каскада усилителя включен по схеме с общим эмиттером. Напряжение смещения на его базу /около 7 В/ подается с резисторов R9 и R15. Элементами отрицательной обратной связи по постоянному току в каскаде являются резистор R19 и конденсатор C9. Резисторы R16, R18 и R22 образуют отрицательную обратную связь по напряжению. Эта связь предназначена для стабилизации режима работы третьего каскада, который может быть нарушен вследствии разброса параметров входящих в него элементов, в первую очередь – транзистора.

Нагрузкой каскада служит первичная обмотка трансформатора T3. На входе каскада имеется схема АРУ.

Транзистор VT3 независимо от величины сигнального тока АЛСН должен работать в режиме класса А, формируя в нагрузке сигнал синусоидальной формы. Поддержание указанного режима работы транзистора обеспечивают схема АРУ и отрицательная обратная связь по переменному току, выполненная на элементах R14,

R 17, R23.

Схема АРУ, построенная на стабилитронах VD3 и VD4, резисторах R12 и R13, конденсаторах C7 и C8 предназначена для защиты усилителя в режиме приема кодовых сигналов большой мощности, импульсных помех, а также помех от высоковольтных линий электропередач.

При номинальном токе АЛСН /1,2 А – при автономной тяге, 1,4 А – при электротяге переменного тока и 2 А – при электротяге постоянного тока/ АРУ не работает. В этом случае через стабилитроны VD3 и VD4 протекает небольшие /около 0,05мА/ токи смещения, уменьшающие их сопротивление в прямом направлении. Конденсаторы С7 и С8 имеют достаточно большую емкость /20 мкФ/ и не оказывают существенного сопротивления входным сигналам, обеспечивая требуемый уровень усиления транзистором VT3. При незначительном возрастании сигнального тока под приемными катушками локомотива /до величины, не превышающей 3 А/ стабилизацию режима работы транзистора VT3 обеспечивает отрицательная обратная связь /элементы R14, R17, и R23/, воздействующая на вход АРУ.

В случае трех-четырехкратного увеличения сигнального тока АЛСН начинает работать АРУ.

Принцип действия АРУ заключается в сравнении каждого сигнала на входе схемы АРУ по уровню /амплитуде/ с уровнем предыдущего сигнала. Если уровень следующего сигнала больше или равен уровню предыдущего, то схема АРУ пропускает этот сигнал на вход третьего каскада усилителя. В противном случае, сигнал на базу транзистора VT3 пропущен не будет. Таким образом, схема АРУ представляет собой своеобразное пороговое устройство с динамически изменяемым порогом. При этом “запоминание” уровня предыдущего сигнала /порога срабатывания/ выполняют конденсаторы C7 и С8. при увеличении сигнального тока в 3-4 раза на конденсаторах С7 и С8 появляется дополнительный потенциал ограничивающий токи, протекающие через стабилитроны VD3 и VD4. Вследствии этого “лишнее” напряжение, постоянно увеличивающееся по мере приближения локомотива к кодирующему концу рельсовой цепи, будет накапливаться на конденсаторах, а его практически неизменная переменная составляющая, несколько превышающая напряжение на конденсаторах, будет пропускаться на базу транзистора VT3. Следовательно, токи базы транзистора VT3 будут практически неизменны и не будут зависеть от уровня сигналов АЛСН.

Если же напряжение на входе усилителя уменьшится, что будет иметь место при прекращении тока АЛСН и возникновения затухающих колебаний в локомотивных фильтрах, а также затухающих колебаниях в фильтрах, вызванных импульсными помехами, то через схему АРУ сигнал переменного тока проходить не будет. Это объясняется тем, что уменьшение амплитуды затухающих колебательных сигналов на выходах фильтров будет происходить быстрее разряда конденсаторов С7 и С8 схемы АРУ. Поэтому транзистор VT3 перейдет в рабочую точку, выходное реле И выключится и искажения выходного сигнала усилителя за счет возможного удлинения импульса кода АЛСН не произойдет.

Реактивность схемы АРУ, то есть время перехода в исходное состояние после принятия сигнала максимального уровня, составляет 1,5 с.

Стабилизация напряжения питания первых трех каскадов усилителя осуществляется стабилитроном VD5 /типа КС 518 А/ и резисторами R25, R25. Недостатком этой схемы является выбор режима работы стабилитрона близким к предельно допустимым токам стабилизации, что потребовало для охлаждения стабилитрона установить радиатор.

Четвертый – выходной каскад усилителя собран по двухтактной схеме на транзисторах VT4, VT5. стабилизацию напряжения его питания обеспечивают стабилитрон VD6 /типа Д 815 Ж/ и резистор R20. Транзисторы VT4 и VT5 работают в ключевом режиме, попеременно вырабатывая импульсы постоянного тока в цепь обмотки реле И. Резистор R21 ограничивает ток в обмотке реле. Конденсатор

C10 /30 мкФ/ служит для сглаживания пульсирующего напряжения питания реле И.

Выходной узел усилителя включает реле И и его контакты: замыкающий 12-13 и размыкающий 32-33 /см.рис.2/. Причем, для упрощения их обслуживания и ремонта контакты расположены на противоположных колонках контактных пружин. Реле И снабжено противовибрационной прокладкой.

Узел регулировки усилителя содержит реле В, переключатели S1, S2 и переменные резисторы R1, R3. С помощью контактов реле В входной узел усилителя подключается либо к катушкам локомотива /реле В включено/, либо к выходам фильтра ФЛ25/75М /реле выключено/. Включение реле В осуществляется кнопкой ВК путем подачи на клемму 2 усилителя напряжения +50 В от локомотивного генератора.

Переключатель S1 включает амплитудный ограничитель на стабилитронах VD1 и VD2, уменьшая чувствительность усилителя при работе на участках с электрической тягой постоянного тока. Переключатель S2, установленный в положение, показанное на рис.2, вызывает снижение чувствительности усилителя в 1,67 раза. С помощью резистора R1 можно дополнительно подрегулировать чувствительность усилителя на частоте 50 Гц, а с помощью резистора R3 – на частоте 25 и 75 Гц.