Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
вопросы на госы.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
306.7 Кб
Скачать

4.Задача вариационного исчисления и правило ее решения.

Функционал- это обобщенное понятие функции, т.е. такая функция в которой роль независимой переменной играет другая функция.

Функционал представляет собой определённый интеграл некоторой функции F, которой должна быть непрерывной и иметь непрерывные частные производные по всем координатам.

Простейшей задачей вариационного исчисления является задача определения функции х0(t), которая бы доставляла экстремум функционалу I и проходила бы через фиксированные точки x0(t0), x(t1) в момент времени t0, t1.

Уравнение Эйлера:

Решением равнения Эйлера является функция x0(t) доставляющая экстремум функционалу и называемая экстремальной, т.е. для того чтобы определить экстремум функционала I достаточно составить и решить уравнение Эйлера.

Правило решения простейшей задачи вариационного исчисления:

Дан функционал:

Где функция F непрерывна и дифференцируема, а x(t0) =x0, x(t1) =x1 , следовательно удовлетворяет граничным условиям.

Определить x0(t)- экстремаль, доставляющую min функционалу I проходящую через граничные точки при t1 и t0.

Правило решения:

  1. Формализация задачи

  2. Определение необходимого условия существования экстремума с помощью уравнения Эйлера

  3. Решение уравнение Эйлера, и определение х0(t).

  4. Доказательство единственности решения или его отсутствия.