
- •Часть 2
- •Часть 3
- •1. Предмет метрологии. Краткая историческая справка о развитии метрологии. Основные проблемы метрологии.
- •2. Свойства объектов геофизических измерений. Специфика измеряемых геофизических величин. Специфика единиц измерения геофизических величин.
- •Измерения. Основные элементы процесса измерения. Классификация измерений.
- •Основные элементы и процессы измерений. Потоки скважинной геофизической информации, условия измерений. Эксплуатационные нагрузки.
- •Основные этапы измерений. Структурная и информационная схемы сгиис. Особенности преобразования информации в различных ее частях.
- •Информационная модель геофизических исследований скважин (гис). Схема преобразования информации при изучении разрезов скважин. Метрологические особенности информационной модели.
- •Погрешности измерений и средств измерений. Классификация погрешностей измерений и средств измерений. Показатели качества измерений.
- •9. Показатели точности измерений и средств измерений. Математические модели погрешности. Основные принципы описания и оценивания погрешностей
- •10. Систематические погрешности. Классификация систематических погрешностей. Способы обнаружения и устранения систематических погрешностей.
- •Случайные погрешности. Вероятностное описание случайных погрешностей. Законы распределения случайных погрешностей. Энтропийное значение погрешности.
- •Грубые погрешности и методы их исключения. Критерии исключения грубых погрешностей. Критерии “трех сигм”, Романовского, Шовенэ.
- •13. Виды измерений. Классификация измерений: прямые, косвенные, совместные, совокупные; равноточные и неравноточные, одно- и многократные, статические и динамические, методические и технические.
- •Динамические измерения и характеристики. Динамические свойства геофизических средств измерений. Динамические характеристики и их классификация.
- •Обработка результатов прямых многократных измерений. Идентификация закона распределения результатов измерений. Составной критерий.
- •Обработка результатов косвенных измерений. Случайные и систематические погрешности косвенных измерений.
- •Обработка результатов совместных измерений. Метод наименьших квадратов.
- •18. Суммирование погрешностей. Основы теории расчетного суммирования погрешностей. Суммирование случайных и систематических погрешностей. Критерий ничтожно малой погрешности
- •Средства измерений. Классификация и свойства средств измерений. Основные параметры и характеристики средств измерения.
- •Погрешности средств измерений. Источники погрешностей.
- •Метрологические характеристики средств измерений. Нормированные метрологические характеристики. Выбор комплекса нормированных характеристик геофизической аппаратуры.
- •Методы и способы измерений. Метод непосредственной оценки; методы сравнения: нулевой, дифференциальный, совпадения, замещения.
- •Структурные схемы средств измерения. Измерительные цепи приборов прямого преобразования и уравновешивания.
- •Основные метрологические процедуры гис. Градуировка геофизической аппаратуры. Виды градуировок. Технология проведения градуировки. Обработка результатов градуировки.
- •1. Система передачи единиц физических величин в сгиис. Стандартные образцы состава и свойств горных пород. Принципы построения локальных калибровочных схем.
- •2. Калибровочные установки и имитаторы сигналов. Физические основы воспроизведения физических величин и сигналов. Типовые конструкции.
- •3. Контрольно-калибровочные скважины. Физические основы воспроизведения физических величин и сигналов. Типовые конструкции. Решаемые задачи. Методики применения контрольно-калибровочных скважин
- •4. Геофизические зонды и датчики. Специфика геофизических зондов и датчиков.
- •5. Измерение глубин при геофизических исследованиях скважин. Причины погрешностей измерения глубин.
- •6. Измерение натяжения кабеля при геофизических исследованиях скважин. Причины погрешностей измерения натяжения кабеля.
- •7. Физические основы измерения обычными зондами кс. Схемы и конструкции обычных зондов кс. Причины погрешностей измерений кажущегося сопротивления. Метрологическое обеспечение метода.
- •8. Физические основы измерения пс. Схемы измерения пс. Конструкции неполяризующихся электродов. Причины погрешностей измерений пс. Метрологическое обеспечение метода.
- •Физические основы измерения микрозондами, резистивиметрами. Схемы и конструкции микрозондов и резистивиметров. Причины погрешностей измерений. Метрологическое обеспечение метода.
- •Физические основы измерения фокусированными микрозондами. Схемы и конструкции фокусированных микрозондов. Причины погрешностей измерений. Метрологическое обеспечение метода.
- •Физические основы измерения зондами индукционного метода. Схемы и конструкции зондов метода. Причины погрешностей измерений. Метрологическое обеспечение метода.
- •Физические основы измерения зондами электромагнитного и диэлектрического методов. Схемы и конструкции зондов. Причины погрешностей измерений. Метрологическое обеспечение метода.
- •Физические основы измерения акустическими зондами массового применения. Схемы и конструкции зондов. Причины погрешностей измерений. Метрологическое обеспечение метода.
- •Физические основы измерения зондами акустического волнового широкополосного метода. Схемы и конструкции зондов. Причины погрешностей измерений. Метрологическое обеспечение метода
- •16. Физические основы измерения интегральным гамма-методом. Схемы и конструкции детекторов гамма-квантов. Причины погрешностей измерений. Метрологическое обеспечение метода.
- •17. Физические основы измерения спектрометрическими методами радиометрии. Схемы и конструкции зондов. Причины погрешностей измерений. Метрологическое обеспечение метода.
- •18. Физические основы измерения нейтронными зондами радиометрии. Схемы и конструкции зондов. Причины погрешностей измерений. Метрологическое обеспечение метода.
- •20. Физические основы измерения плотности флюида в стволе скважины зондами гамма-гамма. Схемы и конструкции зондов. Причины погрешностей измерений. Метрологическое обеспечение метода.
- •22. Физические основы измерения акустическими каверномерами-профилемерами. Схемы и конструкции зондов. Причины погрешностей измерений. Метрологическое обеспечение метода.
- •Физические основы измерения состава флюида в стволе скважины. Схемы и конструкции влагомеров. Причины погрешностей измерений. Метрологическое обеспечение метода.
- •1)История развития стандартизации и сертификации в России и за рубежом. Современные тенденции развития сертификации. Международная деятельность в области стандартизации, сертификации.
- •2.Государственная система стандартизации (гсс). Основные положения государственной системы стандартизации. Концепции системы стандартизации России.
- •3. Правовые основы стандартизации. Международная организация по стандартизации (исо). Гармонизация стандартов
- •4. Основы технического регулирования и стандартизации. Технический регламент (закон) о техническом регулировании в Российской Федерации”
- •5. Закон рф « Об обеспечении единства измерений»
- •6. Государственная система стандартов гсс. Система стандартов и другой нормативной документации.
- •Нормы Государственной системы стандартизации России
- •7.Унификация, классификация и стандартизация. Определение оптимального уровня унификации и стандартизации.
- •8)Построение системы стандартов. Типовая структура стандарта. Важнейшие стандарты различных систем.
- •9)Разработка стандартов. Участники разработки стандартов. Процедура разработки стандарта.
- •10. Нормативные документы на продукцию, услуги, системы качества и персонал. Серия стандартов гост р, исо 9000 , исо 14000. Стандарты серии гост р 51000, en 45000.
- •11) Основные цели и объекты сертификации. Принципы сертификации. Отраслевые особенности сертификации.
- •Организационно-методические и нормативно-правовые основы работ по сертификации. Принципы сертификации
- •Обязательная и добровольная сертификации. Основные цели и задачи системы сертификации. Участники и организация сертификации. Правила построения системы сертификации.
- •15)Основы сертификационных испытаний. Аккредитация органов по сертификации и испытательных лабораторий. Организация деятельности испытательных лабораторий
- •16)Испытательные лаборатории по сертификации геофизической продукции. Нормативная база сертификации геофизической продукции
- •17)Современный подход к управлению качеством (менеджмент качества)
- •18)Качество продукции и защита потребителя. Роль метрологии, стандартизации и сертификации в обеспечении качества геофизической продукции и услуг.
- •19) Добровольная сертификация систем качества на соответствие стандартам серии исо 9000
- •20)Метрологическое обеспечение испытаний геофизической аппаратуры на воздействие внешних факторов
Физические основы измерения зондами электромагнитного и диэлектрического методов. Схемы и конструкции зондов. Причины погрешностей измерений. Метрологическое обеспечение метода.
ДИЭЛЕКТРИЧЕСИКИЙ МЕТОД. Аппаратура – трехкатушечный скважинный прибор, регистрирующий параметры электромагнитного поля с частотой 15-60 МГц (это на несколько порядков выше, чем в индукционном методе.) прибор диэлектрического метода ДМ включает две сближенные генераторные и одну приемную катушки( или одну генераторную и две приемные).
Применяют 2 модификации ДМ: диэлектрический индуктивный (ДИМ-измерение амплитудных характеристик ЭМ-поля) и волновой диэлектрический (ВДМ-измерение фазовых характеристик ЭМ-поля)
Диэлектрический метод выполняют для оценки характера насыщения пласта при низкой минерализации пластовых вод, в условиях низкой дифференциации продуктивных и водоносных пород по удельному электрическому сопротивлению. Условие успешной реализации метода- неглубокие зоны проникновение ( не более 0,6-0,8 м ) это обусловлено невысокой радиальной глубиностью метода ВДМ. Метод ВДМ неэффективен в разрезах низкого сопротивления . поскольку основной вклад в регистрируемые параметры вносит проводимости среды.
Благоприятные условия для ДМ являются скважины, заполненные пресными промывочными жидкостями или РНО, метод может применяться в скважинах, обсаженных степлопластиковыми трубами.
Физические основы измерения акустическими зондами массового применения. Схемы и конструкции зондов. Причины погрешностей измерений. Метрологическое обеспечение метода.
Акустические методы исследования скважин основаны на изучении полей упругих колебаний в звуковом и ультразвуковом диапазонах частот, возникающих в результате воздействия на окружающую скважину среду с помощью специального излучателя либо при взаимодействии породоразрушающего инструмента (долота) с горной породой, либо при циркуляции жидкости и газа через перфорационные каналы или в затрубном пространстве колонны.
Акустические зонды содержат излучатель, приёмник, акустический изолятор, центратор.
По числу основных элементов n, излучателей k и приёмников m, где n=k+m, различают одноэлементные, 2, 3, 4 и многоэлементные зонды.
Одноэлементный пассивный зонд содержит только приёмник, предназначен для измерения акустических шумов в скважине.
Одноэлементным может быть и зонд, в котором преобразователь периодически меняет своё назначение, например, после импульсного излучения переключается на приём отражённых волн (используется в профиле-, кавернометрии, также для акустического телевидения).
Двухэлементные зонды применяют, если нужно измерять только параметры волны P0P1P0, например, для оценки качества цементирования. Длина L(з) небольшая - от 1 до 6 м, что обеспечивает хорошее отношение сигнал/шум.
Трёхэлементные зонды применяют для стандартных акустических исследований на головных волнах или в аппаратуре с прижимным устройством с целью уменьшения влияния геометрии скважины на результаты измерения акустических параметров. Варианты: И 2,0 П1 0,5 П2 или П 3,0 И1 0,5 И2)
Четырёхэлементный зонд И1П1П2И2 представляет собой сочетание двух трёхэлементных И1П1П2 и П1П2И2, их использование позволяет уменьшить влияние перекоса прибора в скважине.
Многоэлементные зонды позволяют исследовать раздельно поле не только во времени, но и вдоль оси скважины. Например МАК-1 содержит два излучателя и 16 приёмников. Предназначен для более надёжного выделения всех типов волн.
Акустические изоляторы устраняют влияние прямой волны по корпусу прибора за счёт её временной задержки или ослабления.
Основные требования: изолятор должен обладать меньшей скоростью распространения упругих волн по сравнению со скоростью волн в буровом растворе, высоким коэффициентом поглощения упругих волн в большом диапазоне частот, чтобы по возможности максимально ослаблять все волны, распространяющиеся по материалу зонда.
Аккустические изоляторы. Акустические изоляторы устраняют влияние прямой волны по корпусу прибора за счёт её временной задержки или ослабления.
Калибровка аппаратуры. При базовой калибровке применяются калибровочные установки, содержащие меры «dT» и «a» в виде акустических волноводов с известными акустическими свойствами, а при полевой калибровке - имитаторы акустических свойств горных пород, представляющие собой устройства в виде акустических преобразователей и электронных блоков, имитирующих временные задержки или затухание акустических сигналов.