
- •Часть 2
- •Часть 3
- •1. Предмет метрологии. Краткая историческая справка о развитии метрологии. Основные проблемы метрологии.
- •2. Свойства объектов геофизических измерений. Специфика измеряемых геофизических величин. Специфика единиц измерения геофизических величин.
- •Измерения. Основные элементы процесса измерения. Классификация измерений.
- •Основные элементы и процессы измерений. Потоки скважинной геофизической информации, условия измерений. Эксплуатационные нагрузки.
- •Основные этапы измерений. Структурная и информационная схемы сгиис. Особенности преобразования информации в различных ее частях.
- •Информационная модель геофизических исследований скважин (гис). Схема преобразования информации при изучении разрезов скважин. Метрологические особенности информационной модели.
- •Погрешности измерений и средств измерений. Классификация погрешностей измерений и средств измерений. Показатели качества измерений.
- •9. Показатели точности измерений и средств измерений. Математические модели погрешности. Основные принципы описания и оценивания погрешностей
- •10. Систематические погрешности. Классификация систематических погрешностей. Способы обнаружения и устранения систематических погрешностей.
- •Случайные погрешности. Вероятностное описание случайных погрешностей. Законы распределения случайных погрешностей. Энтропийное значение погрешности.
- •Грубые погрешности и методы их исключения. Критерии исключения грубых погрешностей. Критерии “трех сигм”, Романовского, Шовенэ.
- •13. Виды измерений. Классификация измерений: прямые, косвенные, совместные, совокупные; равноточные и неравноточные, одно- и многократные, статические и динамические, методические и технические.
- •Динамические измерения и характеристики. Динамические свойства геофизических средств измерений. Динамические характеристики и их классификация.
- •Обработка результатов прямых многократных измерений. Идентификация закона распределения результатов измерений. Составной критерий.
- •Обработка результатов косвенных измерений. Случайные и систематические погрешности косвенных измерений.
- •Обработка результатов совместных измерений. Метод наименьших квадратов.
- •18. Суммирование погрешностей. Основы теории расчетного суммирования погрешностей. Суммирование случайных и систематических погрешностей. Критерий ничтожно малой погрешности
- •Средства измерений. Классификация и свойства средств измерений. Основные параметры и характеристики средств измерения.
- •Погрешности средств измерений. Источники погрешностей.
- •Метрологические характеристики средств измерений. Нормированные метрологические характеристики. Выбор комплекса нормированных характеристик геофизической аппаратуры.
- •Методы и способы измерений. Метод непосредственной оценки; методы сравнения: нулевой, дифференциальный, совпадения, замещения.
- •Структурные схемы средств измерения. Измерительные цепи приборов прямого преобразования и уравновешивания.
- •Основные метрологические процедуры гис. Градуировка геофизической аппаратуры. Виды градуировок. Технология проведения градуировки. Обработка результатов градуировки.
- •1. Система передачи единиц физических величин в сгиис. Стандартные образцы состава и свойств горных пород. Принципы построения локальных калибровочных схем.
- •2. Калибровочные установки и имитаторы сигналов. Физические основы воспроизведения физических величин и сигналов. Типовые конструкции.
- •3. Контрольно-калибровочные скважины. Физические основы воспроизведения физических величин и сигналов. Типовые конструкции. Решаемые задачи. Методики применения контрольно-калибровочных скважин
- •4. Геофизические зонды и датчики. Специфика геофизических зондов и датчиков.
- •5. Измерение глубин при геофизических исследованиях скважин. Причины погрешностей измерения глубин.
- •6. Измерение натяжения кабеля при геофизических исследованиях скважин. Причины погрешностей измерения натяжения кабеля.
- •7. Физические основы измерения обычными зондами кс. Схемы и конструкции обычных зондов кс. Причины погрешностей измерений кажущегося сопротивления. Метрологическое обеспечение метода.
- •8. Физические основы измерения пс. Схемы измерения пс. Конструкции неполяризующихся электродов. Причины погрешностей измерений пс. Метрологическое обеспечение метода.
- •Физические основы измерения микрозондами, резистивиметрами. Схемы и конструкции микрозондов и резистивиметров. Причины погрешностей измерений. Метрологическое обеспечение метода.
- •Физические основы измерения фокусированными микрозондами. Схемы и конструкции фокусированных микрозондов. Причины погрешностей измерений. Метрологическое обеспечение метода.
- •Физические основы измерения зондами индукционного метода. Схемы и конструкции зондов метода. Причины погрешностей измерений. Метрологическое обеспечение метода.
- •Физические основы измерения зондами электромагнитного и диэлектрического методов. Схемы и конструкции зондов. Причины погрешностей измерений. Метрологическое обеспечение метода.
- •Физические основы измерения акустическими зондами массового применения. Схемы и конструкции зондов. Причины погрешностей измерений. Метрологическое обеспечение метода.
- •Физические основы измерения зондами акустического волнового широкополосного метода. Схемы и конструкции зондов. Причины погрешностей измерений. Метрологическое обеспечение метода
- •16. Физические основы измерения интегральным гамма-методом. Схемы и конструкции детекторов гамма-квантов. Причины погрешностей измерений. Метрологическое обеспечение метода.
- •17. Физические основы измерения спектрометрическими методами радиометрии. Схемы и конструкции зондов. Причины погрешностей измерений. Метрологическое обеспечение метода.
- •18. Физические основы измерения нейтронными зондами радиометрии. Схемы и конструкции зондов. Причины погрешностей измерений. Метрологическое обеспечение метода.
- •20. Физические основы измерения плотности флюида в стволе скважины зондами гамма-гамма. Схемы и конструкции зондов. Причины погрешностей измерений. Метрологическое обеспечение метода.
- •22. Физические основы измерения акустическими каверномерами-профилемерами. Схемы и конструкции зондов. Причины погрешностей измерений. Метрологическое обеспечение метода.
- •Физические основы измерения состава флюида в стволе скважины. Схемы и конструкции влагомеров. Причины погрешностей измерений. Метрологическое обеспечение метода.
- •1)История развития стандартизации и сертификации в России и за рубежом. Современные тенденции развития сертификации. Международная деятельность в области стандартизации, сертификации.
- •2.Государственная система стандартизации (гсс). Основные положения государственной системы стандартизации. Концепции системы стандартизации России.
- •3. Правовые основы стандартизации. Международная организация по стандартизации (исо). Гармонизация стандартов
- •4. Основы технического регулирования и стандартизации. Технический регламент (закон) о техническом регулировании в Российской Федерации”
- •5. Закон рф « Об обеспечении единства измерений»
- •6. Государственная система стандартов гсс. Система стандартов и другой нормативной документации.
- •Нормы Государственной системы стандартизации России
- •7.Унификация, классификация и стандартизация. Определение оптимального уровня унификации и стандартизации.
- •8)Построение системы стандартов. Типовая структура стандарта. Важнейшие стандарты различных систем.
- •9)Разработка стандартов. Участники разработки стандартов. Процедура разработки стандарта.
- •10. Нормативные документы на продукцию, услуги, системы качества и персонал. Серия стандартов гост р, исо 9000 , исо 14000. Стандарты серии гост р 51000, en 45000.
- •11) Основные цели и объекты сертификации. Принципы сертификации. Отраслевые особенности сертификации.
- •Организационно-методические и нормативно-правовые основы работ по сертификации. Принципы сертификации
- •Обязательная и добровольная сертификации. Основные цели и задачи системы сертификации. Участники и организация сертификации. Правила построения системы сертификации.
- •15)Основы сертификационных испытаний. Аккредитация органов по сертификации и испытательных лабораторий. Организация деятельности испытательных лабораторий
- •16)Испытательные лаборатории по сертификации геофизической продукции. Нормативная база сертификации геофизической продукции
- •17)Современный подход к управлению качеством (менеджмент качества)
- •18)Качество продукции и защита потребителя. Роль метрологии, стандартизации и сертификации в обеспечении качества геофизической продукции и услуг.
- •19) Добровольная сертификация систем качества на соответствие стандартам серии исо 9000
- •20)Метрологическое обеспечение испытаний геофизической аппаратуры на воздействие внешних факторов
Метрологические характеристики средств измерений. Нормированные метрологические характеристики. Выбор комплекса нормированных характеристик геофизической аппаратуры.
Метрологические характеристики СИ – характеристики, отражающие свойства СИ, оказывающие влияние на результаты и погрешности измерений. Характеристики, устанавливаемые нормативно-техническими документами, называются нормируемыми, а определяемые экспериментально – действительными. Нормируемые МХ, приводимые в нормативно-технической документации, отражают свойства совокупности СИ данного типа, т.е. являются номинальными.
Перечень нормируемых МХ делится на шесть групп:
- характеристики преобразования, предназначенные для определения результатов измерений (функция преобразования; значение однозначной меры; цена деления шкалы; вид и число разрядов кода, цена единицы наименьшего разряда кода цифровых CИ);
-характеристики погрешности (характеристики систематической и случайной составляющих основной погрешности; вариации показаний);
-характеристики влияния, чувствительности СИ к влияющим величинам (функции влияния, изменения значений MX, вызванные изменениями влияющих величин);
-динамические характеристики (полные и частные);
-характеристики энергетического взаимодействия СИ с объектом измерений или другим СИ (например, входной и выходной импедансы);
- неинформативные параметры выходного сигнала (например, амплитуда и длительность импульса).
Для описания обобщенных метрологических свойств СИ часто применяют «класс точности» – обобщенную характеристику, определяемую пределами допускаемых основной и дополнительных погрешностей. Эта характеристика в геофизике не применяется.
Основные положения по выбору комплекса НМХ:
1. НМХ, включаемые в комплекс, выбираются из числа характеристик, регламентированных, в соответствии с установленными в данных стандартах критериями.
2. Основным условием возможности решения всех перечисленных задач является наличие однозначной связи между нормированными MX и инструментальными погрешностями. Эта связь устанавливается посредством математической модели инструментальной составляющей погрешности, в которой нормируемые MX должны быть аргументами.
3. Нормирование MX СИ должно производиться исходя из единых теоретических предпосылок.
4. Нормируемые MX должны быть выражены в такой форме, чтобы с их помощью можно было обоснованно решать практически любые измерительные задачи и одновременно достаточно просто проводить контроль СИ на соответствие этим характеристикам.
5. Не следует нормировать те MX, которые оказывают несущественный по сравнению с другими вклад в инструментальную погрешность.
6. Нормируемые MX должны обеспечивать возможность статистического объединения, суммирования составляющих инструментальной погрешности измерений.
Методы и способы измерений. Метод непосредственной оценки; методы сравнения: нулевой, дифференциальный, совпадения, замещения.
Метод измерения - совокупность приемов использования принципов и средств измерений. Под принципами измерений и построения СИ понимают совокупность физических явлений, на которых они основаны.
По физическому принципу все методы делятся на: электрические, магнитные, акустические, оптические, механические и т.д.
По принципам построения различают средства измерения прямого действия и сравнения и соответственно методы измерений – непосредственной оценки и сравнения. В средствах измерения прямого действия - неоднократные, последовательные преобразования измеряемой величины в процессе измерений. В средствах измерения сравнения- цепь обратного преобразования (уравновешивания).. Метод непосредственной оценки - значение измеряемой величины непосредственно считывают по шкале одного или нескольких СИ прямого действия, которые заранее проградуированы в единицах измеряемой величины или единицах других величин, от которых она зависит. Точность ограничена, но высокая быстрота процесса измерений. Метод сравнения- совокупность приемов использования физических явлений и процессов для определения соотношения однородных величин. Наиболее часто это соотношение устанавливается по знаку разности сравниваемых величин.
Нулевой метод – метод сравнения с мерой, в котором результирующий эффект сравнения измеряемой и образцовой величин доводят до нуля, т.е. f(х) = f(N). Это контролируется специальным средством измерения – нуль-индикатором (компаратором).
В дифференциальном методе мерой f(N) не полностью уравновешивают измеряемую величину f(x). Разность D = f(x) – f(N) измеряется прибором непосредственной оценки в масштабе измеряемой величины x. Дифференциальный метод позволяет получать результаты с высокой точностью даже при применении относительно грубых средств для измерения разности.
Метод совпадений – это метод сравнения с мерой, в котором разность между искомым и воспроизводимым мерой значениями ФВ измеряют, используя совпадения отметок шкал или периодических сигналов.
Метод замещения основан на сравнении с мерой, с помощью которой измеряемую величину замещают известной величиной, воспроизводимой мерой, сохраняя все условия измерений и характеристики средства измерений неизменными.